

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

ADAPTING THE DYNAMIC ALLOCATION OF FIRES
AND SENSORS (DAFS) MODEL FOR USE IN MARITIME

COMBAT ANALYSIS

by

Scott B. Hattaway

March 2008

 Thesis Advisor: Arnold Buss
 Second Reader: Ronald D. Fricker, Jr.

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
March 2008

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE Adapting the Dynamic Allocation of Fires and Sensors
(DAFS) Model for Use in Maritime Combat Analysis
6. AUTHOR(S) Scott B. Hattaway

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE
 A

13. ABSTRACT (maximum 200 words)
The U.S. Navy employs several models of maritime combat to provide analytical rigor to force
structure and weapon system procurement policies. All of the models currently used are high
resolution and deterministic, providing very detailed results but without any measurement of
variance or any statistical manner of evaluating risk. This thesis provides the initial groundwork
for a low resolution stochastic maritime combat model that may provide an initial evaluation and
shape future detailed studies. The framework for the model is a Discrete Event Simulation (DES)
Model fed by Extensible Mark-up Language (XML) input and output modules. The simulation
loads scenario inputs from XML files forming the baseline values of entities, the rules employed
for movement and combat, and the general concept of the scenario. During simulation run, the
model makes intermittent calls to an optimization package to allocate weapons based on a multi-
dimensional knapsack problem simulating a networked force. Upon completion of the simulation
run, the model generates an XML output that can be later read for statistical analysis and data
mining. Because of the stochastic nature of the model, it provides an increased level of analytical
quality to its results as well as the ability to calculate the risk involved with the force structure and
units employed.

15. NUMBER OF
PAGES

143

14. SUBJECT TERMS
Dynamic Allocation of Fires and Sensors, DAFS, stochastic, search and detect, XML, discrete event
simulation, Java, Simkit, Maritime combat, Anti-Surface warfare, ASuW, Anti-Air Warfare, AAW,
combat simulation, combat model 16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

ADAPTING THE DYNAMIC ALLOCATION OF FIRES AND SENSORS (DAFS)
MODEL FOR USE IN MARITIME COMBAT ANALYSIS

Scott B. Hattaway

Lieutenant Commander, United States Navy
B. S., United States Naval Academy, 1996

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL
March 2008

Author: Scott B. Hattaway

Approved by: Dr. Arnold Buss
Thesis Advisor

Dr. Ronald Fricker, Jr.
Second Reader

Dr. James Eagle
Chairman, Department of Operations Analysis

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

The U.S. Navy employs several models of maritime combat to provide analytical

rigor to force structure and weapon system procurement policies. All of the models

currently used are high resolution and deterministic, providing very detailed results but

without any measurement of variance or any statistical manner of evaluating risk. This

thesis provides the initial groundwork for a low resolution stochastic maritime combat

model that may provide an initial evaluation and shape future detailed studies. The

framework for the model is a Discrete Event Simulation (DES) Model fed by Extensible

Mark-up Language (XML) input and output modules. The simulation loads scenario

inputs from XML files forming the baseline values of entities, the rules employed for

movement and combat, and the general concept of the scenario. During simulation run,

the model makes intermittent calls to an optimization package to allocate weapons based

on a multi-dimensional knapsack problem simulating a networked force. Upon

completion of the simulation run, the model generates an XML output that can be later

read for statistical analysis and data mining. Because of the stochastic nature of the

model, it provides an increased level of analytical quality to its results as well as the

ability to calculate the risk involved with the force structure and units employed.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

DISCLAIMER

The reader is cautioned that computer programs developed in this research may

not have been exercised for all cases of interest. While every effort has been made,

within the time available, to ensure that the programs are free of computational errors,

they cannot be considered validated. Any application of these programs without

additional verification is at the risk of the planner.

 viii

THIS PAGE INTENTIONALLY LEFT BLANK

 ix

TABLE OF CONTENTS

I. INTRODUCTION..1
A. RESEARCH OBJECTIVES...2

1. Stochastic Emulation of Radar Probability.......................................3
2. Emulation of Modern Naval Weapons...4
3. Methodology to Analyze Scenario Results...4

II. METHODOLOGY ..5
A. THE RADAR MODEL..5

1. The Radar Equation ..6
2. The Glimpse Model..8
3. Applying the Radar Equation to a Kinematic Model.....................11
4. Applying the Glimpse Model to Determine Time of Detection......17

B. EMULATING NAVAL WEAPONS..18
1. Straight Missile Flight Path ..19
2. Missile Flight Path with Waypoints ...22
3. Waypoints Do Not Provide More Insight ..26

III. IMPLEMENTATION ...29
A. MAJOR COMPONENTS ...29

1. Physical Components...30
a. Platforms ...30
b. Sensors...31
c. Weapons ..32
d. Munitions ..32

2. Primary Component Interactions ..32
a. Sources and Listeners ...33
b. Referees and Mediators/Adjudicators34

3. Functional Components...35
a. Mover Managers ...35
b. Command Element..36
c. Kill Probability Objects ...37
d. Inventory Objects ..37

4. Weapon Assignment Components..37
a. Value of Potential Assignments..38
b. VPA Usage...38
c. Constrained Value Optimizer ...39

B. DAFS EXECUTION..40
1. Input ..41
2. Runtime...44
3. Output ...45

C. RADAR MODEL IMPLEMENTATION..46
1. Simkit Implementation..47
2. DAFS Implementation...50

 x

IV. SCENARIO AND ANALYSIS..53
A. BASE SCENARIO DESCRIPTION ..53

1. Scenario Units...54
2. Scenario Layout ...55
3. Scenario Victory Conditions ...57

B. DESIGN OF EXPERIMENT..58
1. Factors...58
2. Scenario Replications...58

C. ANALYSIS ...58
1. Rough Analysis...59
2. Logistic Regression Analysis...61
3. Linear Regression Analysis...64
4. Analysis Conclusions ...66

V. CONCLUSIONS ..67
A. CONCLUSIONS ..67
B. RECOMMENDATIONS...68
C. FOLLOW ON RESEARCH ...70

APPENDIX A: SAMPLE DAFS XML FILES...71
1. BASE SCENERIO FILE...71
2. PLATFORM VALUES ...86
3. KILL PROBABILITIES...87

APPENDIX B: SIMKIT IMPLEMENTATION OF RADAR MODEL93
1. NEWRADARSENSOR CLASS..93
2. NEWRADARMEDIATOR CLASS ...95
3. TESTRADARSENSORPLATFOM CLASS...98

APPENDIX C: DAFS IMPLEMENTATION OF RADAR MODEL....................101
1. DAFSRADARSENSOR CLASS...101
2. DAFSRADARMEDIATOR CLASS ..104

APPENDIX D: SIMULATION UNIT CHARACTERISTICS107
1. AMERICA CLASS AIRCRAFT CARRIER (CV)...................................108
2. TICONDEROGA CLASS CRUISER (CG) ..109
3. ARLEIGH BURKE CLASS (FLIGHT I/II) DESTROYER (DDG)110
4. ARLEIGH BURKE CLASS (FLIGHT IIA) DESTROYER (DDG).......111
5. LUYANG II (TYPE 052C) CLASS DESTROYER (DDGHM)...............112
6. LUYANG I (TYPE 052B) CLASS DESTROYER (DDGHM)113
7. JIANGWEI II (TYPE 053H3) CLASS FRIGATE (FFGHM).................114
8. SURFACE-TO-SURFACE MISSILES ...115
9. SURFACE-TO-AIR MISSILES...115

LIST OF REFERENCES..117

INITIAL DISTRIBUTION LIST ...121

 xi

LIST OF FIGURES

Figure 1. Comparison of Gamma and Geometric Distributions over 300 Dwells10
Figure 2. Related Triangles to Determine Distances...14
Figure 3. Graph of Kinematic Solution Calculated in Excel Model15
Figure 4. Effects of Decreased RCS on Model ...17
Figure 5. Single Waypoint Missile Flight Paths..23
Figure 6. Chord Geometry to Determine Waypoints ..24
Figure 7. Multiple Waypoint Missile Flight Paths ..26
Figure 8. Entity Structure Example...31
Figure 9. DAFS Input Design Structure..41
Figure 10. Data From Simkit Implementation of Radar Model ..49
Figure 11. Visual Display of Simkit Implementation of Radar Model50
Figure 12. Scenario Start Positions in DAFS..56
Figure 13. Blue Force Positions at Scenario Start...57
Figure 14. Histogram of Casualties...60
Figure 15. Distribution of Casualties ..61
Figure 16. Prediction Profiler for Selected Factors of Full Model....................................62
Figure 17. Prediction Profiler for Weapons Factors..63
Figure 18. Prediction Profiler for Sensor Factors..64

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF TABLES

Table 1. Kinematic Model Inputs ..11
Table 2. Missile Flight Path Kinematic Model Inputs ...20
Table 3 Single Waypoint Flight Coordinates and Distances ..23
Table 4. Multiple Waypoint Flight Coordinates and Distance25
Table 5. Interaction Templates...33
Table 6. Mover Manager Descriptions ..36
Table 7. Explicit and Implicit Sub-Factors ..39
Table 8. Model Benchmarks ..47
Table 9. List of Forces in Scenario ..54
Table 10. Casualty Rates and Attack Ranges ..59
Table 11. Parameter Estimates for Full Model Logistic Regression62
Table 12. Parameter Estimates for Logistic Regression (Weapons Only).......................63
Table 13. Parameter Estimates for Logistic Regression (Sensors Only)64
Table 14. Summary of Fit and Parameter Estimates for Linear Regression Model of

Blue Casualty Rate (Weapons Only) ...65

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

EXECUTIVE SUMMARY

The U.S. Navy utilizes a large array of combat models to provide analytical rigor

to its policy and programming decisions. These models are generally large and complex

involving millions of variables and hundreds of hours to run a single iteration. However,

many of the decisions that face battle group staffs and Pentagon action officers grant a

limited time for analysis. Instead of the months of research and coding required for a

single run of these complex simulation models, analysts must use tools that can provide

accurate and credible results in a matter of days. In an effort to investigate a tool that

might meet this requirement, this thesis utilizes Dr. Arnold Buss’ Dynamic Allocation of

Fires and Sensors (DAFS) model to analyze a modern naval combat scenario.

 DAFS was originally used to analyze the predicted abilities of the Army’s Future

Combat System (FCS) and its role in net-centric warfare. Specific analysis was

conducted to examine the fact that with the data of the various units linked, there were

now more targets available to a greater mix of platforms. This proposed the use of

optimization to determine the best mix of weapons from the various platforms to cause

maximum damage to the enemy. This same optimized combat solution dove-tails with

the Navy’s net-centric warfare philosophy utilizing near real-time tactical data links

(TADIL) and even Cooperative Engagement Capability (CEC) for fire control data.

Because of this pre-existing Command and Control architecture, DAFS seemed a logical

choice to be adapted for use in the modern naval environment.

 This thesis is directed at adapting DAFS for use as a naval combat simulation

model by providing three distinct products. First, DAFS required an implementation of a

mathematical radar model for detection and engagement of contacts. Currently, DAFS

uses a modified ACQUIRE algorithm, as defined by the Army Modeling and Simulation

Office (AMSO), to determine detection of contacts via visual means. Since modern

naval combat utilizes electronic sensors for prosecution of targets, the ACQUIRE

algorithm is an unsatisfactory method of adjudicating detections. For the DAFS maritime

version, the ACQUIRE algorithm was replaced with a more traditional electronic

detection algorithm based off of detection and radar theory.

 xvi

 The second product of the thesis was the simulation of naval ordnance as applied

to modern maritime combat. The vast majority of weapons employed in ground combat

utilize flat or low apogee ballistic trajectories. However, many anti-surface, anti-air, and

anti-ground weapons utilize more complex flight paths involving way-points and non-

ballistic trajectories. The basis for implementing way-pointed missile flight paths is

developed in the model as well as a quick analysis of their potential with regards to the

radar model. These weapons were simulated in the model, providing greater fidelity to

the warfare they modeled and a basis for understanding the effects of these weapons on

the final results.

 Lastly, after multiple runs of a set scenario, the thesis provides examples of a

methodology to interpret the run results. The method identifies key indicators of victory

conditions as well as possible vignette points in which experimentation can be made to

further understand the factors involved. It provides probabilities of success as well as

identifies critical units, weapons, or sensors in the scenario. This methodology also

examines distributions of results to provide predictive value from the findings. Key to

this methodology are the tools of data mining, statistical analysis, and campaign analysis.

 Through this thesis, DAFS has been demonstrated to posses the potential to be an

effective and flexible tool for quick analysis of maritime warfare. The component based

design inherent in DAFS allowed for the easy implementation of a mathematical radar

model. The stochastic nature of the model provided a range of variability for point

estimates as well as a rich set of statistical data to base inferences from. Additionaly, the

DAFS model can be utilized for rough-cut analysis of a problem to suggest further more

detailed analysis by complex models. In this manner, the more time consuming models

such as ITEM, NSS, or GCAMs may be better applied to the more intricate aspects of the

problem.

 The results obtained in this thesis are representative of the potential of DAFS as a

combat model. Through the process of writing this thesis and utilizing the model, several

improvements were indentified that would enable the model to be better utilized by

analysts. The DAFS combat model also possesses the potential to be a tool for

operational planners who require rapid proofing of their battle plans. Continued

 xvii

refinement of the DAFS model, in particular with a focus on naval warfare, would

present the U.S. Navy with an invaluable tool for rapid analysis of

combat related issues.

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

 xix

ACKNOWLEDGMENTS

 During the course of this thesis, many individuals have provided insight,

assistance, or motivation to complete the work. I thank each of those people who have

enabled me to finish this thesis.

 First and foremost, I must thank my wife, Takako, who listened to my

mathematical ramblings with deaf ears. Without her reminders about what is important,

and the occasional chai tea, cookies, and cheese cake, this thesis would have been much

more difficult.

 I must also thank Professor Arnold Buss for patiently listening to my rants about

structured coding while at the same time guiding my work towards the right answer. The

experience of working beside you has been an education in simulation modeling without

peer. I only hope that through future effort I may repay the time you spent with me.

 I would also like to thank Professor Ronald Fricker, who patiently waded through

my prose and polished the rough spots.

 I also must thank the NPS Operations Research faculty and the fellow students of

my cohort. Though you may not have known it, you tacitly inspired me to work late at

night and long hours on the weekend, if nothing more so that I did not feel so far behind.

 xx

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

The U.S. Navy utilizes a vast array of computer generated combat models to

provide analytical rigor to long range strategic and policy decisions. These models

provide an interface between the war fighters making policy and the mathematical

analysts investigating the issues. The models encapsulate millions of calculations

representing the interactions between the environment, weapons, units, and a host of

other variables into a seamless performance providing an end result for the analysts to use

as the basis of their recommendation.

 The models the Navy currently uses have been developed over several decades as

the Navy and the civilian sector work together to provide a more comprehensive product

for the Navy’s use. These models have grown in complexity as both the warfare they

emulate and the computers that support them have grown more complex and powerful.

However, because the models are continuations of their original forms, many of them

suffer from design choices that were made two to three decades ago when the computers

used for the model were not as powerful or sophisticated enough to run more complex

algorithms. These design choices that seemed perfectly natural in the past are now

binding restraints on the model.

One of these hindering design choices is discrete time based simulation.

Although a natural progression from the way people think and act, discrete time based

simulation requires the model to perform actions and calculations in defined blocks of

time. The model performs all of its calculations and interactions only at these specific

points in time

 In very complicated simulations, the calculations for the next block of time may

take hundreds or thousands of times longer than the actual time block it simulates. In

the case of the Air Forces EADSIM model that modeled the early part of the air

campaign in Operation Desert Storm, it required 8 days of real time to model three days

of simulated time.1 These simulations also suffer when there are very few interactions in

1 Case (1993).

 2

a given time block because the model must still perform all of its routine calculations at

each time step. Because of this, campaign models built on a time stepped system tend to

have large periods of wasted simulation time.

The second limiting design choice is making a simulation deterministic. Because

of the complexity and immense number of calculations required of a stochastic model,

most combat models are made deterministic to save development and run time.

However, this excludes the model from exploring the range of possible outcomes as well

as providing a standard deviation of measurements. These two factors make any

extrapolation of risk mere guesswork by a subject matter expert.

A. RESEARCH OBJECTIVES

This thesis is directed at providing a better radar model of detections to the DAFS

combat model for use in further naval studies. Because DAFS was originally created as a

combined work between NPS and TRAC-Monterey to investigate concepts for Future

Combat Systems, its model of radar detections is based on the Army’s ACQUIRE

algorithm and not a traditional radar model. Although more than adequate for electro-

optical and thermal sensors, the ACQUIRE algorithm is a poor representation of

detection for radar, ESM, and other long range electronic sensors. Results derived from

the ACQUIRE algorithm’s model of radar are widely divergent from those of NSS,

ITEM, and other certified naval combat models because of this difference.

Secondly, this thesis will incorporate the new radar model with the networked

fires architecture of DAFS to provide a scenario that emulates modern naval combat.

Because DAFS uses an optimization routine to determine what units to apply weapons to,

it in effect mimics a Force Warfare Commander controlling over a networked battle

force. This total picture form of combat is used today in the Navy’s Link architecture

and more particularly in the CEC architecture.

Lastly, this thesis will provide an investigation as to what characteristics in DAFS

are most important when examining the results of a combat scenario. Because DAFS is a

stochastic combat simulation, it provides the opportunity for multiple runs to compute the

variance of a finding. It also provides the opportunity through hundreds or even

 3

thousands of runs to better explore the domain of a problem using simulation analysis

techniques. Through examining a single complex scenario, this thesis provides a first

step towards evaluating further DAFS simulations and provide a reference for further

studies.

1. Stochastic Emulation of Radar Probability

Radar detections are normally computed through a series of equations, curve

charts, and other complicated means based on the physics of radar propagation. These

detections are based almost exclusively on physical factors such as radar cross section,

effective receiving aperture, and other design features of the radar or the target itself.

Although these factors are required for high resolution physics based models, they are

superfluous to a low resolution model. Because DAFS is a low-resolution combat

simulation, it does not investigate sensors and detections in physics based manner but

relies on mathematical models of the detection itself.

In this thesis, detections will be based on a handful of factors in a mathematical

model to maintain its low resolution nature and to ensure calculations are both simple and

expedient. All factors are based on the traditional radar equation but only the most

necessary factors (max radar range, radar cross section of target, PRF, etc.) will be

utilized. This produces a relatively accurate depiction of the radar’s effective range

compared to the target as well as a quick determination of the probability of detection

based on the sensor characteristics.

Lastly, a variation of the glimpse based detection model will be used to determine

when detection occurs. More complex versions of this model are commonly used in

other combat simulations and its pedigree extends back to World War II. In this thesis, a

simplified single probability of detection model will be coupled with the target geometry

and the PRF of the sensor to determine a single probability of detection of the target.

This simplified detection model remains true to the low-resolution nature of DAFS while

maintaining a robust depiction of radar detection.

 4

2. Emulation of Modern Naval Weapons

Modern naval combat is no longer solely about single ships attacking ships – it is

a unified and controlled application of force between two or more groups of units. To

facilitate this type of engagement, an over arching target selection process must be

implemented that examines all sensor and weapons data collected from the units and

decides how to distribute weapons among them. DAFS already has a linear programing

and integer solver designed to do just that which enables the units to act in a networked

manner similar to the US Navy’s linked architecture.

Secondly, the majority of weapons employed in naval combat are not linear

geometry ballistic weapons but cruise missiles and aircraft. These modern weapons

require more complex flight geometries as the transit to their targets. However, because

DAFS is a low-resolution model, this thesis will construct simplified versions of their

flight paths to better emulate the more complex versions. This provides greater realism

to the model but also increases the display time of incoming missiles and aircraft

presenting a greater opportunity for them to be destroyed by anti-missile weapons.

3. Methodology to Analyze Scenario Results

Although DAFS is able to provide measurements of any factor in the simulation,

some factors are more important than others. DAFS is able to report the results of a

scenario to a data file for review as both a summary and as a step-by-step process. This

enables an analyst to examine both the playback of the scenario as well as the end results

as a source of information in a database. This dual perspective allows for both a macro

and a micro view of the results.

In this thesis, an examination of the base scenario will be performed from

multiple runs of a single scenario. These results will be examined via data mining and

statistical analysis as well as the more time consuming manner of visual playback for

those scenarios deemed anomalous or statistically significant.

 5

II. METHODOLOGY

As stated in the introduction, the goal of this thesis is to provide a better radar

model to the DAFS suite and to implement it in a maritime combat scenario for

evaluation and analysis. This problem can be split into three elements and each tackled

separately to provide a comprehensive solution. The first element is to design a radar

model grounded in traditional radar theory but simple enough to be conducted quickly by

the DAFS suite. The second element is to implement non-ballistic naval weapons into

the DAFS suite and combine this with the radar model to provide a rich demonstration of

maritime SUW and AAW combat. Lastly, after combining the two elements into a

complex scenario, to test the scenario and provide an analysis of the results.

This project approaches these elements with a functional DAFS model that has

been developed looking almost exclusively at ground combat and US Army

requirements. Several of the functional components in DAFS are co-opted in this project

providing for a more reliable development of the model. These elements and their

integration are discussed in Chapter III.

A. THE RADAR MODEL

The first element to be developed is a simplified and DAFS friendly version of the

radar model. In essence, any model implemented in DAFS is a mathematical

representation of the actual system or event that it represents. However, there are two

directions from which this model can be formed. The first is to observe the process and

formulate an equivalent mathematical representation for the end result, or the “outside-

in” approach. This method usually requires little understanding of the process itself but

an immense amount of trial and data to develop robust enough models.

The second direction that may be taken is to start from the inner workings of the

process and build a mathematically equivalent system that functions in a similar manner.

This “inside-out” approach requires a much greater understanding of the process as the

modeler is now tasked with developing equivalent systems in his model that produce a

final result similar to the actual process. However, this approach requires much less trial

and data as the modeler bases his entire model in the roots of the system and not the

outcome. In this project, the second approach will be followed to develop the radar

model. To maintain the validity of the model, it is critical that it be rooted in the well

developed physics of radar theory.

1. The Radar Equation

The radar equation is the fundamental representation of radar’s ability to detect a

target based on the radar cross section (RCS) of the target and the physical characteristics

of the radar itself. Developed from both the physics of radar waves and from empirical

observations encapsulated in tables and charts, it provides a robust means of calculating a

radars maximum effective range against a given size target. It also forms the basis of the

radar model developed in this thesis.

()

4
max 2

min4
t t eP G AR

S
σ

π
= (2.1)

 Rmax Maximum radar range
 Pt Antenna transmission power
 Gt Antenna gain
 Ae Effective aperture area
 σ Target radar cross section
 Smin Receiver minimum detectable signal

As can be seen from Equation 2.1, the radar’s maximum range is heavily

dependent on its physical characteristics. However, to simplify our model, we assume

that all variables in the equation remain constant with the exception of the target’s radar

cross section and the Maximum radar range. In this manner, we are able to calculate an

effective radar range for our sensor based on the target’s RCS. Making this change, the

equation becomes:

 4
maxR Kσ= (2.2)

Rmax Maximum radar range
σ Target radar cross section
K Grouped constant generated from Pt Gt Ae/(4π)2Smin

 6

Because we assume that the radar’s physical characteristics remain constant

between detections of different targets, we are able to form an effective radar range

relation using Equation 2.2. This new relation allows us to base all effective radar ranges

off of a known value listed for the radar and therefore produce accurate effective ranges

for the sensor.

44

max

arg

eff

ref t et

RR K
σ σ

= = (2.3)

Rmax Maximum radar range
σref Reference radar cross section
K Grouped constant generated from Pt Gt Ae/(4π)2Smin
Reff Maximum effective radar range
σtarget Target radar cross section

For the purposes of this thesis, we assume that the reference radar cross section

used to determine the maximum radar range is 25 m2. This size reference target is quite

common for testing of air search radars and thus is an industry standard for determining a

production units maximum range. Applying this assumption, the equation for

determining a sensors maximum effective range becomes:

1/4

target
eff max 2R =R

25m
σ⎛ ⎞

⎜ ⎟
⎝ ⎠

 (2.4)

With this equation we now have a simple manner of determining the maximum

detectable distance of any target based off of its RCS and the sensors maximum radar

range. In practice, this formula will accurately predict the maximum effective range of

any target with an RCS equal to or greater than 0.1 m2. However, for targets with an

RCS less than 0.1 m2 (so called “stealthy” targets), this relationship no longer holds true.2

For the purposes of this thesis, a radar relationship equation for stealthy targets will not

be investigated.

2 Knott, Shaefer, and Tulley (2004).

 7

2. The Glimpse Model

The second part of our mathematical model of radar involves determining an

actual probability of detection. The most common manner of calculating a probability of

detection for any periodic sensor is a glimpse model. A glimpse model assumes that an

observer or sensor has a set number of opportunities to detect a target. For each

opportunity of detection, an independent Bernoulli trial is conducted to determine if the

observer detects the target. As the sensor is given more opportunities to detect the target,

the overall probability of detection increases as the Cumulative Distribution Function

(CDF) of a geometric random variable.

 (2.5) ()() 1 1 kF k P= − −

 F(k) Probability of at least one successful trial given k trials

P Probability of success for each independent Bernoulli trial
 k Total number of trials conducted

 In this manner, a single calculation for the probability of detection by the observer

can be generated based on the number of glimpses conducted and the individual

probability of detection at each glimpse. However, for the equation to hold true as the

CDF of a geometric random variable, each Bernoulli trial must have the same probability

of success. It is also noted that for any given positive probability of success, the

probability of at least one successful trial is always 1 given an infinite number of

glimpses.

Because radar can not radiate and receive at the same time, it effectively provides

periodic glimpses over a given search area, and thus a glimpse. These individual

glimpses of observation (or dwells) can be calculated based on the periodic rotation

frequency (PRF) of the given radar. The PRF provides a measurement of the number of

scans it can conduct in a given period of time, thus providing a dwell count. This dwell

count represents the number of independent Bernoulli trials conducted by the radar as it

attempts to detect a target.

Several factors can cause the probability of success at each individual glimpse to

fluctuate. In the case of radar detecting an incoming target, the strength of the return
 8

from the target will increase as the target closes the range. This in effect increases the

probability of detection by the sensor. The radar cross section of a target also changes

depending on the aspect of the target towards the sensor. An aircraft approaching nose

on provides only its nose and wing edges to reflect radar waves back to the transmitter

while a banking aircraft may provide a sizeable portion of the aircraft body and both

wings to reflect radar waves. This too would also change the overall probability of

detection at each glimpse. However, to maintain the simplicity of the mathematics

behind the model, a single probability of detection of 0.01 at each glimpse will be

maintained for all targets. This allows us to continue to use the more fundamental

equations of search theory without resorting to differential equations or abstract averages.

Combining the CDF of the geometric random variable with our assumptions and

glimpse count, the model now provides a single probability of detection. This model

does not require each individual Bernoulli trial to be conducted as in a time-stepped

simulation because of the use of the CDF. It also provides a quick manner to determine

the probability the target is detected by the sensor based solely on the number of glimpses

that it will conduct.

 (2.6) det 1 (1 0.01)kP = − −

 Pdet Overall probability of detection based on the number of dwells
 k Number of dwells conducted by the sensor

It is not enough to know whether a detection of the target occurs but also when.

Previously we made the assumption that the probability of detection at each dwell was a

uniform 0.01. Extending this assumption, it would be natural then to determine when a

target is detected by a random draw from a geometric random variable. However, this

idea fails inspection by experienced radar operators who know that the individual

glimpses are not memory-less and that the kinematics of the target also plays an

important role in the probability of detection. In practice, by using a geometric random

variable to determine when the detection occurs, we imply that the sensor is just as likely

to make its detection on its farthest dwell as it is its nearest, which as stated before is not

reflected in reality. To compensate for this, this model will utilize a gamma random

 9

variable shaped so that the greatest likelihood of detection occurs at approximately 1/3 of

the total number of dwells.

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 50 100 150 200 250 300

Gamma Cumulative Gamma Geometric Cumulative Geometric

Figure 1. Comparison of Gamma and Geometric Distributions over 300 Dwells

In a side by side comparison, there is some difference in the overall outcome of

the two techniques. As an example, the above sensor has 300 dwells to achieve

detection. If a Gamma Distribution (α=4, β=0.1) is used, the peak likelihood of detection

occurs at 90 dwells. For a Geometric Distribution (p=0.01), there is no peak likelihood

because each dwell has the same chance of detection. Looking at both distributions’

CDFs over the domain of 300 dwells, it is apparent that the cumulative Gamma

Distribution covers the domain better than the cumulative Geometric Distribution (300

dwells reaches a total probability of 0.9897 for the Gamma compared to 0.9510 for the

 10

 11

Geometric). However, the Gamma Distribution only provides an answer for when the

detection takes place given that detection occurred, and thus a conditional answer. By

utilizing the Geometric Distribution, we may combine both the probability of detection

with the time of detection as one single measurement. This will be further explained in

the kinematic model.

3. Applying the Radar Equation to a Kinematic Model

Now that we have a manner of determining the radar sensor’s maximum effective

range and probability of detection, it is best to examine how this can be applied in a

kinematic model. To facilitate this, a mathematical model of the process was created in

Microsoft Excel to provide quick and accurate feedback of the results. This model

combines the mathematics of the radar equation and glimpse model with a given

kinematic target presentation to produce critical information in the detection process.

 X Y
ShipLocation 0.00 0.00 TargetPath
 m c
 X Y y= 1.00 x + 50.00
TargetInitialLoc 200.00 250.00 a b c
TargetFinalLoc -250.00 -200.00 1.00 x + -1.00 y + 50.00 = 0
TargetRCS 15 m^2
TargetSpeed 700 kts CPAPath
 m c
SensorMaxRange 250 nm y= -1.00 x + 0.00
SensorMaxDetection 220 nm
SensorPRF 14 spm X Y
 CPALoc -25.00 25.00
InitialDetection 220 nm
TargetCPA 35.36 nm X Y
DistInitLocToCPA 318.20 nm InitDetLoc 129.38 179.38
DistInitDetToCPA 218.33 nm

TimeToInitDet 8.56 min
TimeToCPA 27.27 min
TimeInitDetToCPA 18.71 min

GlimpsesToCPA 262 dwells
ProbDet 0.9281

Table 1. Kinematic Model Inputs

The initial information required for the Excel model is the sensor’s position

(normally the origin), the maximum detection distance, and the PRF of the radar. For the

target, the model requires a starting position, an ending position, speed in knots, and the

target’s RCS. Utilizing simple geometric relationships, the model computes the track of

the target and computes an equation of motion in both slope-intercept and general

equation of a line forms.

 *fin init fin init
init init

fin init fin init

y y y y
Y X y x

x x x x

⎡ ⎤⎛ ⎞ ⎛− −
= + −

⎞
⎢ ⎥⎜ ⎟ ⎜⎜ ⎟ ⎜− −

⎟⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
 (2.7)

 *fin init fin init
init init

fin init fin init

y y y y
X Y y x

x x x x

⎡ ⎤⎛ ⎞ ⎛ ⎞− −
0− + − =⎢⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

⎥ (2.8)

Xinit Target’s initial x-coordinate position
Yinit Target’s initial y-coordinate position
Xfin Target’s final x-coordinate position
Yfin Target’s final y-coordinate position

Utilizing the equation of motion for the target, we are able to generate a closest

point of approach (CPA). This CPA provides the cornerstone for the remaining

calculations as we assume that no detection may occur after this point as the radar has

had its best opportunity for detection up to this point. The slope-intercept equation for

the CPA line is generated by Equation 2.9.

 *fin init fin init
ship ship

fin init fin init

x x x x
y X y x

y y y y

⎡ ⎤⎛ ⎞ ⎛ ⎞− −
= − + − −⎢ ⎥⎜ ⎟ ⎜⎜ ⎟ ⎜− −

⎟⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
 (2.9)

Xinit Target’s initial x-coordinate position
Yinit Target’s initial y-coordinate position
Xfin Target’s final x-coordinate position
Yfin Target’s final y-coordinate position
Xship Sensor’s x-coordinate position
Yship Sensor’s y-coordinate position

Combining Equation 2.7 and 2.9 and solving for a single X-Y coordinate, the

kinematic model determines the CPA point utilizing Equations 2.10 and 2.11.

 12

* *fin init fin init
ship ship init init

fin init fin init
cpa

fin init fin init

fin init fin init

x x y y
y x y x

y y x x
X

y y x x
x x y y

⎡ ⎤ ⎡⎛ ⎞ ⎛− −
− − − −⎢ ⎥ ⎢⎜ ⎟ ⎜⎜ ⎟ ⎜− −⎢ ⎥ ⎢⎝ ⎠ ⎝⎣ ⎦ ⎣=

⎛ ⎞ ⎛ ⎞− −
+⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

⎤⎞
⎥⎟⎟⎥⎠⎦ (2.10)

 * *fin init fin init
cpa cpa ship ship

fin init fin init

x x x x
Y X y x

y y y y

⎡ ⎤⎛ ⎞ ⎛ ⎞− −
= − + − −⎢ ⎥⎜ ⎟ ⎜⎜ ⎟ ⎜− −

⎟⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
 (2.11)

Xinit Target’s initial x-coordinate position
Yinit Target’s initial y-coordinate position
Xfin Target’s final x-coordinate position
Yfin Target’s final y-coordinate position
Xship Sensor’s x-coordinate position
Yship Sensor’s y-coordinate position

At this stage in the calculations, the model is now able to determine the maximum

effective sensor range and the point in the target’s path that this occurs at. Utilizing

Equation 2.4 and the data inputted the model computes the effective range of the radar

versus the target’s RCS. The model then computes the CPA distance using Equation

2.12.

2

*

1

fin init
ship ship

fin init
cpa

fin init

fin init

y y
X Y

x x
D

y y
x x

⎛ ⎞−
−⎜ ⎟⎜ ⎟−⎝ ⎠=

⎛ ⎞−
+⎜ ⎟⎜ ⎟−⎝ ⎠

 (2.12)

Xinit Target’s initial x-coordinate position
Yinit Target’s initial y-coordinate position
Xfin Target’s final x-coordinate position
Yfin Target’s final y-coordinate position
Xship Sensor’s x-coordinate position
Yship Sensor’s y-coordinate position

At this point, the model now has information for various legs of two related

triangles. These triangles allow for the computation of distances and times along the

 13

equation of motion for the target itself using the Pythagorean Theorem. Utilizing these

relationships, the model computes Dcpa,det and Ddet,init.

Figure 2. Related Triangles to Determine Distances

 () ()2

,init cpa cpa init cpa initD X X Y Y= − + −
2

 (2.13)

 , *60mininit cpa
cpa

tgt

D
T

S
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

 (2.14)

 det, * tan arccos
R

cpa
cpa cpa

eff

T
D T

⎛ ⎞
= ⎜⎜

⎝ ⎠
⎟⎟ (2.15)

 , det,
det *60mininit cpa cpa

tgt

D D
T

S
⎛ ⎞−

= ⎜ ⎟⎜ ⎟
⎝ ⎠

 (2.16)

Xinit Target’s initial x-coordinate position
Yinit Target’s initial y-coordinate position
Xcpa Target’s CPA x-coordinate position
Ycpa Target’s CPA y-coordinate position
Stgt Target’s speed in knots
Reff Effective range of the sensor against RCS of target

 14

Utilizing similar triangles linking the origin, the CPA point, and both the

maximum radar range and maximum effective radar range, the location of the first

possible detection is determined using Equations 2.17 and 2.18.

 () det,
det

,

* cpa
cpa init cpa

init cpa

D
X X X X

D
= + − (2.17)

 () det,
det

,

* cpa
cpa init cpa

init cpa

D
Y Y Y Y

D
= + − (2.18)

Xinit Target’s initial x-coordinate position
Yinit Target’s initial y-coordinate position
Xcpa Target’s CPA x-coordinate position
Ycpa Target’s CPA y-coordinate position

 Ddet,cpa Distance from first possible detection to CPA
Dinit,cpa Distance from initial location to CPA

Plotting the distances and points generated from the sample data, the model

provides a display of the positions and measurements calculated on an X-Y graph. By

altering the characteristics of the target or the radar, various kinematic solutions and

initial detection point possibilities can be calculated.

Figure 3. Graph of Kinematic Solution Calculated in Excel Model

 15

At this point, the final calculations required deal solely with calculation of the

probability of detection. Because the model has determined the distance from the initial

possible detection point to the CPA, we can determine the amount of time that the sensor

is permitted to detect the target based on the target’s speed. This calculation can then be

multiplied by the PRF of the radar and a floor function applied to determine the exact

number of dwells conducted by the sensor.

 det,
det, *60mincpa

cpa
tgt

D
T

S
= (2.19)

 det, *cpaDwells T PRF⎢ ⎥= ⎣ ⎦ (2.20)

Ddet,cpa Distance from first possible detection to CPA
Stgt Target’s speed in knots

Having the exact number of dwells conducted by the sensor, the model then

calculates a probability of detection for the given kinematic scenario based on a glimpse

probability of 0.01. In the example problem, the probability of detection is calculated to

be 0.9281, providing a better than 90% chance that the target is detected before reaching

CPA. By altering a single characteristic of the target, in this case RCS, it is possible to

see the full spectrum of changes brought by the model. As the RCS decreases, so too

does the maximum effective range of the radar providing fewer glimpse opportunities for

detection. The effect is most apparent with the low RCS 0.1 m2 target that has less than a

50% of detection before reaching CPA. This emulates small RCS sea skimming cruise

missiles which may not be detected by the ship at all, or when detected, provide little

opportunity for defensive actions. In the case of this same target, the radar has less than 5

minutes to detect the target before it reaches CPA.

 16

Figure 4. Effects of Decreased RCS on Model

4. Applying the Glimpse Model to Determine Time of Detection

Now that the model has determined the probability of detection, there are two

methods for determining the time the target is detected. The first method conditions the

time of detection on the fact that a detection exists. Knowing the probability of detection

for the given kinematic problem, a draw is made from a standard Uniform Distribution to

conduct a Bernoulli trial for detection. If the number drawn is less than or equal to the

probability of detection, the sensor successfully detects the target. If the draw is greater

than the probability of detection, then the trial fails and the target is never detected.

Based on the condition that a successful detection was made, a second draw is conducted,

this time from a tailored Gamma Distribution that produces a number between 0 and 1

that is multiplied by Tdet,cpa to determine when the detection occurs. As was stated

earlier, the strength of this technique is that is allows the generated results to be tailored

to empirical data or the observations of subject matter experts. The weakness in this

 17

 18

method is that it relies on several random draws as well as deviates from the premise of

the glimpse model that every glimpse is identical and memoryless.

A second method is to use the Geometric Distribution entirely to determine when

and if detection occurs. In this method, a single draw from the Geometric Distribution

with an argument of the glimpse probability of detection (in this case 0.01) produces the

number of dwells required for detection to occur. In the event that the number drawn is

less than the dwell count generated by the model, then the detection determination occurs

in much the same manner as with the Gamma Distribution. If the draw is greater than the

dwell count, then the detection occurs after CPA, and possible after the target has

collided or over flown the sensor. It is also possible for the number drawn to be greater

than twice the dwell count, and thus occurring outside the maximum effective range of

the radar and in this case the detection must be discounted. The advantage of this method

is that it does not require multiple draws from different distributions and it combines the

probability of detection with the time of detection measurements. As was seen before,

the CDFs of both the functions are similar enough that either may be used with little

difference in their outcomes. However, for this thesis, the Gamma distribution will be

used to determine when detection occurs.

B. EMULATING NAVAL WEAPONS

The second element to be developed for this thesis is an emulation of modern

naval weapons. For surface and air warfare, all naval weapons can be divided in to two

categories determined by their primary means of delivery. Gunnery or ballistic weapons

have existed since the age of sail and continue in use to this day. They have evolved

from the single shot weapons of the Napoleonic era to the rapid firing chain guns and

large caliber weapons seen on modern naval warships. Despite this evolution in design,

the original concept of launching an explosive shell down a straight path has changed

little. The mathematics to model such a weapon also remains simple with the munitions’

path being characterized by a straight path from a top down view or a ballistic parabola

from a side view. Because these weapons remain simple to model, we will concentrate

on the second form of naval weapon, the missile.

 19

Missiles now form the backbone of most modern naval arsenals. They are

launched from surface ships, aircraft, and even submarines. With the introduction of the

SS-N-3 Shaddock and SS-N-2 Styx missiles by the U.S.S.R. in 1959 and 1960

respectively, a whole new era in naval combat was begun. These weapons pushed the

lethal range of a ship past the horizon where ballistic weapons formed the lethal punch of

a ship. Utilizing radar as the primary sensor, it allowed naval vessels to engage each

other without ever being within visual range of each other. Despite this increase in range

and revolution in naval combat, the fact remains that a missile is a munition following a

path to its target. The major difference between a missile’s flight path and a ballistic

shell’s flight path is that the missile is no longer required to fly straight to its target.

1. Straight Missile Flight Path

The simplest missile flight path to model is the straight missile flight path. This

type of flight path is common among early anti-ship cruise missiles and all ship launched

air defense missiles. The missile simply launches and then follows the shortest distance

path to its intended target. To derive a mathematical model of this flight path, the thesis

incorporated a second kinematic model created in Microsoft Excel. This model assumed

that the launching platform was positioned at the origin of an X-Y grid measured in

nautical miles. The target was provided an initial location and a current location (based

on the time of weapon launch) to derive its course. Target speed was also given as an

input. Lastly, a maximum range and missile speed were provided to complete the model.

Utilizing this information, the model was able to compute the impact position of the

missile and the distance required to make it there.

 X Y
ShipLocation 0.00 0.00 TargetPath
 m c
 X Y y= -1.17 x + 61.67
TargetInitialLoc 10.00 50.00
TargetCurrentLoc 40.00 15.00 theta= -0.8622
TargetPredictLoc 45.21 8.93
TargetSpeed 50 kts MaxTargetTime 9.60 min
 MaxTargetDist 8.00 nm
MissileMaxRange 80 nm
MissileSpeed 500 kts X Y
 PredictedChange 5.21 -6.07

MissileFltPath0 X Y MissileStraightPath
-Initial 0.00 0.00 m c
-Terminal 45.21 8.93 y= 0.20 x + 0.00
-Distance 46.08 nm
 r= 46.08 theta= 0.1949

Table 2. Missile Flight Path Kinematic Model Inputs

To determine the necessary information, the model first determines the target’s

path by transforming it into the equation of a line (Equation 2.7). Then it computes the

angle theta in radians that describes the angular direction of the target.

 arctan fin init

fin init

X X
Y Y

θ
⎛ ⎞−

= ⎜⎜ −⎝ ⎠
⎟⎟ (2.21)

Xinit Target’s initial x-coordinate position
Yinit Target’s initial y-coordinate position
Xfin Target’s current x-coordinate position
Yfin Target’s current y-coordinate position

As a check-sum to the process, the model also determines the maximum flight

time of the missile as well as the maximum distance the target can travel in that given

time.

 max
max 60minflight

missile

RT
S

= (2.22)

 max
max g 60min

tgt flight
t t

S T
D = (2.23)

 20

 Rmax Maximum range of missile
 Smissile Speed of missile
 Stgt Speed of target

Using the target’s equation of motion and the maximum flight time of the missile,

the model predicts the maximum change in position of the target. Adding this change to

the known current location of the target establishes its predicted location at missile

impact. This calculation is made with the implied assumption that the target will traverse

its maximum distance given the flight time of the missile. This assumption is made to

simply the later mathematics and because the Excel model is used to provide insight into

the missile flight paths and not a granular physics based model. Suffice it to say, the

seeker on this theoretical missile would be able to acquire the target within a specified

range and therefore alleviate the requirement for a more exact impact position.

 max costgt tgtX D θΔ = (2.24)

 max sintgt tgtY D θΔ = (2.25)

 Dmaxtgt Maximum distance traveled by target
 θ Angular direction of target

Connecting the launch platform’s position to the target’s predicted location, the

model produces an equation of motion describing the straight line path the missile would

make to intercept the target. The model also computes the straight line distance between

the launch platform and the target to provide the flight distance of the missile.

 pred ship pred ship
ship ship

pred ship pred ship

Y Y Y Y
Y X Y X

X X X X
⎛ ⎞ ⎛ ⎞− −

= + −⎜ ⎟ ⎜⎜ ⎟ ⎜− −⎝ ⎠ ⎝ ⎠
⎟⎟

)

 (2.26)

 () (2

missile pred ship pred shipD X X Y Y= − + −
2

 (2.27)

 Xpred Target’s predicted x-coordinate position
 Ypred Target’s predicted y-coordinate position
 Xship Launching ship’s x-coordinate position
 Yship Launching ship’s y-coordinate position

 21

 22

This simplified approach provides a reasonably accurate approximation of the

missile’s straight flight path for flight times of less than 30 minutes and for slow moving

targets (<100 knots). For faster moving targets or longer missile flight times, the

assumptions made for the target’s position at impact weaken; however, this model is

adequate enough to describe the motion of straight line missile shots for our purposes.

2. Missile Flight Path with Waypoints

The straight line missile flight path generated in the above model describes the

motion of many missiles in the world’s naval inventory. However, many of the Anti-

Ship Cruise Missiles (ASCM) employed on modern naval warships travel to their targets

through a series of waypoints. These waypoints allow the missile to attack its target from

a bearing completely different than the one the launching ship may lie on. This tactic is

also useful to avoid a ship’s counter attack as the natural reaction of the target ship is to

launch its own weapons down the bearing of the attacking missile. In either case, a

model of the flight path of a way pointed missile has to be developed to apply these

weapons to the DAFS model.

In looking at this problem, the previous Excel model was expanded upon. The

mathematics used to determine the predicted intercept point of the missile was vital to

determining the intercept point of a way pointed missile. However, the main data

required from this model is not the equation of motion of the straight shot missile but the

bearing and range of the intercept point. The way pointed missile is challenged with

traveling through a series of points to eventually arrive at this same intercept point. The

simplest way to build these waypoints is to determine a simple relationship to the

intercept point and build the waypoints from that.

To do this, a geometric shape was imposed on the straight line flight path and the

necessary waypoints determined from that shape. In missile flight path 1a, the missile

travels the path completing an isosceles triangle over the straight line path. In missile

flight path 1b, the missile again travels a triangular path, this time completing a scalene

right triangle. Both of these simple flight paths involved one waypoint and could be

simply calculated using known geometric relationships.

MissileFltPath0 X Y
-Initial 0.00 0.00
-Terminal 45.21 8.93
-Distance 46.08nm

MissileFltPath1a X Y
-Initial 0.00 0.00
-wp1 20.03 17.51
-Terminal 45.21 8.93
-Distance 53.21nm

MissileFltPath1b X Y
-Initial 0.00 0.00
-wp1 31.67 18.00
-Terminal 45.21 8.93
-Distance 52.72nm

Table 3 Single Waypoint Flight Coordinates and Distances

0

10

20

30

40

50

60

0 10 20 30 40 50

ShipLocation

TargetPath
TargetPredictLoc
MissileFltPath0

MissileFltPath1a
MissileFltPath1b

Figure 5. Single Waypoint Missile Flight Paths

 23

Simple geometry is able to produce reasonable missile flight paths and waypoints

for a single waypoint missile, but for two to three waypoints, a different approach was

required. To produce reasonable waypoints for these types of flight paths, a few more

assumptions were made to simplify the math. First, that the missile’s first waypoint was

always the same, in this case 30 degrees off axis from the straight line path and 0.75 of

the straight line distance. This point corresponded to the exact same location as the

waypoint for missile flight path 1b. The second assumption made was that all legs after

that waypoint were of equal distance. These two assumptions allow the model to use

chord mathematics to complete the distance from waypoint 1 to the intercept point.

r

r
Target’s
predicted
location

θ
θ

r
r crdθ

r crdθ
wp 2

wp 1

Figure 6. Chord Geometry to Determine Waypoints

Utilizing these assumptions, the model determines theta by dividing 90 degrees by

the remaining number of waypoints and calculates the distance required between each

waypoint. All of this is done using polar coordinates and the chord function of the

derived angle.

 ()2 2 1 cos1 cos sin 2 2cos 2 2sin
2 2

crd θ θθ θ θ θ −
= − + = − = = (2.28)

 24

 25

Table 5 shows the waypoints generated using this technique along with the

required polar coordinates describing the change of the missile’s flight path at each

waypoint. It also demonstrates that this same technique may be used to determine a

missile flight path to the left or right of the straight line path.

MissileFltPath1a X Y
-Initial 0.00 0.00 X Y r theta
-wp1 20.03 17.51 wp1aChange 20.03 17.51 26.60 0.7185
-Terminal 45.21 8.93
-Distance 53.21nm

MissileFltPath1b X Y
-Initial 0.00 0.00 X Y r theta
-wp1 31.67 18.00 wp1bChange 31.67 18.00 36.43 0.5167
-Terminal 45.21 8.93
-Distance 52.72nm

MissileFltPath2 X Y
-Initial 0.00 0.00 X Y r theta
-wp1 31.67 18.00 wp2aChange 31.67 18.00 36.43 0.5167
-wp2 40.32 16.26 wp2bChange 8.65 -1.73 8.82 -0.1978
-Terminal 45.21 8.93
-Distance 54.06nm

MissileFltPath3 X Y
-Initial 0.00 0.00 X Y r theta
-wp1 36.14 -4.61 wp3aChange 36.14 -4.61 36.43 -0.1268
-wp2 41.49 -1.98 wp3bChange 5.35 2.63 5.96 0.4567
-wp3 44.51 3.17 wp3cChange 3.02 5.14 5.96 1.0403
-Terminal 45.21 8.93
-Distance 54.32nm

Table 4. Multiple Waypoint Flight Coordinates and Distance

-10

0

10

20

30

40

50

60

0 10 20 30 40 50

ShipLocation

TargetPath

TargetPredictLoc

MissileFltPath0

MissileFltPath1a

MissileFltPath1b

MissileFltPath2

MissileFltPath3

Figure 7. Multiple Waypoint Missile Flight Paths

3. Waypoints Do Not Provide More Insight

As was seen from the mathematics above, adding waypoints to a missile’s flight

path requires an additional overhead of calculations. Examining the end result of

waypoints (additional distance traveled by the missile and therefore increased opportunity

for detection), it was determined that waypoints provide little value added to our model.

Using the example above, a missile fired at an intercept point of 46.08 nautical miles only

increased its travel distance to 54.32 nautical miles by adding three additional waypoints.

This additional distance of 8.24 nautical miles provides slightly less than one minute to

the overall flight time of the missile. For a high PRF radar, this may provide upwards to

60 additional glimpse opportunities, but not enough to make a significant change in the

overall probability of detection. In the example above, if the radar is able to detect the

 26

 27

missile from launch to impact, it would have 392 dwells of opportunity for the flight path

with waypoints and 332 dwells for the straight shot. The probability of detection is

98.05% for the way pointed missile and 96.44% for the straight shot, a difference of only

1.61%. This difference in detection probabilities is even less for lower PRF radars.

It can also be observed that for most low RCS missiles, the initial opportunity for

detection happens at a much closer range. The driving factor for overall detection of such

a weapon is no longer the flight time of the missile but the RCS which effectively mask

the missile from any glimpses until it has reached the maximum effective range of the

sensor. For these reasons, waypoints were not be incorporated into the overall DAFS

model.

 28

THIS PAGE INTENTIONALLY LEFT BLANK

 29

III. IMPLEMENTATION

The Dynamic Allocation of Fires and Sensors (DAFS) simulation model provides

a partially developed combat model to add the newly developed radar model. DAFS

combines the kinematic mathematics inherent in Dr. Arnold Buss’ Simkit with an XML

library and Graphic User Interface (GUI) to drive the combat simulations. It incorporates

a Constrained Value Optimizer (CVO) to provide a method of decision making for the

individual units in the model thus allowing the user to pre-assign the desired logic and

allow the simulation to run its course. This methodology improves on the conventional

combat simulations by applying the best characteristics of both a decision engine (CVO)

with event-based and stochastic simulation (Simkit).

The following sections provide a detailed description of DAFS and its individual

components to provide the reader with a better understanding of the object-oriented

model, how the individual units interact with one another, and the basic implementation

steps required to add the radar model. The information contained in the sections

describing DAFS components and their functions is liberally borrowed from LT Michael

Havens’ thesis Dynamic Allocation of Fires and Sensors.

A. MAJOR COMPONENTS

One of the most significant aspects of the DAFS model is its component-based

architecture. Within the simulation model, there are two types of components that work

together to provide DAFS its overall capability. Some of the elements represent physical

items such as sensors, movers, and munitions; others represent functionality like the

sensor’s detection of a contact or the command to engage a target. Both of these types of

elements are equally important and provide the benefit of a “plug-and-play” architecture.

The individual elements may be switched out with different versions without altering any

other portion of the model. The physical elements represented in DAFS are platforms,

sensors, weapons and munitions. The functional elements are the command element,

mover managers, kill probabilities, and the CVO. The physical elements will be

discussed first followed by the functional elements and interaction fundamentals.

 30

1. Physical Components

The physical components of DAFS are designed to represent actual physical

components found in actual combat. Keeping the component interchangeability concept

to the forefront, these components are designed to represent the most basic building

blocks of the items they represent. They are also designed to allow seamless replacement

without affecting any other component in the simulation. The platform forms the basic

component for a unit to which zero or more components may be attached to further flesh

out the simulated unit.

a. Platforms

Within the simulation, platforms represent the foundation structure of any

combat unit involved in the scenario such as ships, aircraft, or even unmanned aerial vehicles

(UAVs). Platforms may also represent non-mobile entities like radar stations and missile

batteries, but the platform element is still used as the primary reference point for all other

physical elements. Platforms are only responsible for knowing their current position and

velocity and reporting the same to requesting sources. Additionally, when either the

magnitude or the direction of a platform’s velocity vector is changed in any way, a property

change is fired that may be received by other entities listening for the change. The use of

listeners is key to this particular style of modeling and occurs frequently throughout DAFS3.

The listener feature refers to the fact that an element may be registered to listen for specific

actions that occur within the simulation. These actions may be property changes or

simulation events and may be triggered by other entities or by the simulation routine itself.

These actions then may elicit a response on the part of the registered listener. Property

change sources and listeners are resident in JAVA and the simulation event counterparts are

in Simkit.

As the foundation structure for all physical entities in the simulation, the

platform may have associated with it any number of the sensors, weapons and

communications elements described below. One may look at this as a direct analogy to

constructing an actual combat unit where the body is first manufactured and then all of the

3 Buss (2000), Buss & Sanchez (2002).

weapons systems are installed. From an operational point of view, this means that wherever

the foundation, or body, of the unit goes, so does the attached system. Therefore, the only

entity that really needs to know its location is the foundation, or the platform. In the case of

DAFS, once the platform entity is created, the associated sensors, weapons, munitions and

communications are given a reference to the platform as they are created. This is

conceptually depicted in Figure 7.

 31

Figure 8. Entity Structure Example4

FCS Platform

Sensor
Weapons
(implied)

Munitions Types
Sensor DAFS

Commander

FCS Platform

Sensor
Weapons
(implied)

Munitions Types
Sensor DAFS

Commander

b. Sensors

Like the platform, the sensor component is very limited in its functionality.

The sensor maintains only its basic capabilities in the form of its type, max range and

footprint. Additionally, it maintains a container for its detections. Once created, a sensor

object is given a reference to its associated platform in order to locate itself. The capability of

a sensor to process detections is accomplished through the use of the functional objects called

mediators and referees along with the listening process described earlier. The concept of

referees and mediators, or adjudicators, is repeated between munitions and targets and a

description of how all these items interact is contained in the primary interactions section

below.

4 Ahner (2005).

 32

c. Weapons

From a functional point of view, the only task that a weapon accomplishes is

launching munitions. Thus, the weapon itself does not play a critical role in the basic analysis

of the effectiveness of the force. It is the munitions that interact with targets and therefore

represent the real objects of focus when it comes to combat adjudication. The weapon object

has been developed though to allow more analysis of unit configurations. Specifically,

because a weapon object defines a platforms ability to deliver particular munitions types, the

collection of weapons configured into a platform largely defines its potential employment.

d. Munitions

Munitions objects draw on the same process used to make the sensors

function. Like the sensor, the munitions object only keeps track of its type and footprint. The

adjudication of a weapon-target interaction is handled by the referee/adjudicator combination

described below. At runtime, only the inventories of munitions by type are established on

each platform. During the running of a simulation, if a munitions object is needed, it is

instantiated on the fly provided the inventory level is greater than zero. This methodology

minimizes the number of active objects in the simulation and improves performance.

2. Primary Component Interactions

There are two primary interaction templates that give DAFS the majority of its

functional capability. The first is the referee-mediator and referee-adjudicator template,

which apply to sensors and munitions respectively. The second is the source-listener template

that allows two things. First, it allows the monitoring property changes throughout the model

as a data gathering medium for analysis and second, as briefly described above, it allows

elements within the simulation to act based on the actions or property changes of other

elements. Table 6 captures the basic organization and function of these templates.

 33

Template Type Function

Referee/Sensor Mediator Determines platform
interactions

Referee/Mediator Referee/Munitions
Adjudicator

Determines munitions
effects

Property Change Triggers actions based
on the state change of
another entity Source/Listener Simulation Event Triggers actions based
on the occurrence of a
particular event

Table 5. Interaction Templates5

a. Sources and Listeners

The source-listener protocol is essential to the success of discrete event

programming. As a tool, the protocol is one of the items that separates discrete event

simulation from time step simulation. In time step simulation, all potential interactions must

be checked at each time step to resolve whether or not an interaction is occurring, an

evaluation load on the order of N
2

for each time step, where N represents the total number of

entities in the scenario. This also means that interactions that would have begun in the mid-

point of the time step are delayed and thus alter the level of “reality” attained. Discrete event

simulation, on the other hand, by implementing the source-listener template, calculates the

precise time of interactions and schedules the event at that time. At most this requires an

evaluation load on the order of N for every event or property change. As the events are

reached on the event list, the appropriate actions are taken, and the simulation continues.

The two main uses for the source-listener template are simulation control and data

gathering. However, both function in exactly the same manner. The primary difference being

that when a data gathering listener “hears” a change in the simulation, it only records the

information and does not subsequently affect the remainder of the simulation run.

5 Havens (2002).

 34

The key elements of the source-listener template are the sources, the listeners and the

registration process between the two. Sources, as the name implies, are the source of a trigger

that may or may not require action on the part of another entity within the simulation. It

doesn’t matter if there is a registered listener or not, if it is something that could affect

something else, the source is responsible to “fire” the information. The listener is the receiver

of this information, and is responsible to process it however it has been programmed to do so.

The critical link is the registration process. The listener must be registered as such

with the source in order to receive the information. This registration process provides the

benefit of reducing the processing load to only those entities that have the need or capability

to deal with the particular information fired. For example, a detections counter would be

registered as a listener to a particular sensor, the source. Every time the sensor fires a

detection event, the counter will hear it and tally that a detection event had occurred. This is

an example of a data-gathering listener. If the parent platform of the sensor was also

registered as a listener, it may alter its course as a result of the detection event. That would be

a simulation control item.

Sources and listeners are used extensively throughout DAFS. One of the most

impacting uses is in the evaluation of interactions between weapons or sensors and the

platforms in the battle space. For this application, referees are registered as listeners and

oversee the potential for interactions.

b. Referees and Mediators/Adjudicators

The referee-mediator/adjudicator template is used extensively in DAFS. The

concept of mediators and adjudicators is exactly the same except that the mediator applies to

sensor-target interactions and the adjudicator to munitions-target interactions. For the sake of

brevity, only the referee-mediator template is described here with references to the

adjudicators as necessary.

The referee may be viewed as a simulation monitor that listen for changes within the

simulation that may lead to interactions between entities, or to changes in previously

determined interactions. These events could be the appearance of a new entity, a change in an

entity’s velocity vector or the detectable properties that an entity may be emitting. In essence,

a referee is a focused “eye-in-the-sky” that monitors whether changes in entities it is

 35

responsible for might result in subsequent interactions. Once this potential is determined, the

referee passes entities that may have interactions to the appropriate mediator or adjudicator.

In the case of sensors and targets, the referee listens for changes in targets that would

potentially create or change a detection event. If, for instance, a target maneuvers, the referee

hears the change and executes its process. The referee takes the target’s new course and

speed, and with it, determines what sensors the target will come within range of. The referee

only considers the sensors that have the ability to detect the target. For each of the sensors

that will have the target enter its footprint, the referee passes the target and the sensor

information to a mediator. The mediator then uses the detection algorithm associated with its

footprint to determine whether or not a detection event will occur. If so, the detection will be

scheduled on the event list and the simulation will go on. If not, nothing occurs. If the sensor

already has a detection scheduled for a particular target and it will no longer occur, or will be

different, the appropriate changes are made.

The referee-adjudicator template follows the same logic described for the

referee-mediator and is applied when a munitions object fires an impact event. The referee

then accomplishes the same task with the munitions footprint and the targets within it.

Adjudicators determine the extent of damage occurring to targets based on the munitions type

and distance from the impact.

3. Functional Components

Functional components within a simulation handle administrative matters and serve

as decision or organization modules. Within DAFS, there are three significant functional

components that will be discussed: mover managers, command elements and kill probability

objects. Additionally, the inventory object will be described. The inventory object does not,

at this point, play a critical role in the simulation. However, its concept and functionality will

become increasingly beneficial as the research in this area grows more complex.

a. Mover Managers

Mover managers, as the name implies, manage the movement behaviors of

the platforms. Each mover manager object type represents a specific movement pattern that a

platform may engage in. Current forms of mover managers are patrolling, intercepting and

 36

basic path following. Each mover manager gets its unique form through different

combinations of location control and behavior. Each uses JAVA Point2D objects for location

management and simulation event protocol for its behavior. Table 4 summarizes these mover

manager types.

b. Command Element

The command element is a functional element associated with each platform.

This element organizes priorities, objectives and capabilities within each unit. The command

element has two primary functions. First, it acts as a priority filter to keep the highest desired

action at the top of the list. Second, it maintains track over requirements, such as reporting

criteria or munitions inventory status, and ensures the entity complies with actions as

necessary. The command element makes use of the listener protocol to accomplish its

monitoring functions. It is the command control element that controls which of the mover

managers is currently being used by the platform and whether or not it will engage targets

within range.

Mover Manager Location Control Behavior

PathMoverManager List of JAVA Point2D
objects

Sequences through the
list of points and stops
at the end.

PatrolMoverManager List of JAVA Point2D
Objects

Sequences through the
list of points and
repeats a set number
of times or unlimited
until another mover
manager takes control

InterceptMoverManager Single JAVA Point2D
object

Proceeds to the point
and triggers the
behavior contained

Table 6. Mover Manager Descriptions6

6 Havens (2002).

 37

c. Kill Probability Objects

Kill probability objects contain the ability to generate the expected

probability of kill for a particular munitions type against a particular platform type as a

function of range. The basic template for these objects does not presume the method that will

be used to generate the value. Rather, the kill probability interface requires a contract set of

methods that the user must employ so that any kill probability generator will work. Kill

probability implementations currently in DAFS include linear, piecewise linear and

exponential functions. A kill probability implementation that utilizes a lookup table was also

developed. Other functional forms may be developed and used, as long as the kill probability

interface is implemented.

d. Inventory Objects

Also stemming from an interface, inventory objects were developed to allow

DAFS some level of benefit from logistic considerations. The interface for this object defines

basic inventory methods including adding inventory, reducing inventory, returning the level

for a specific item and many other standard inventory functions. Currently, the inventory

object is used to track munitions inventory levels to assist in both the VPA calculation and

eventual use of munitions. Again, because the objects stem from an interface, the user may

design several other inventory objects for specific purposes and give them additional methods

required to complete the functionality desired.

4. Weapon Assignment Components

A basic requirement of all combat simulations is the assignment of weapons to

targets as an interaction between the represented units. In DAFS, a value optimized

calculation is made from a variety of factors to assign the optimal weapon to the given

known targets. In this manner, DAFS is able to emulate a networked battle force in

which knowledge of the targets is shared throughout. This mathematical characterization

of networked systems is carried out by the Value of Potential Assignments and the

Constrained Value Optimizer components.

 38

a. Value of Potential Assignments

VPA refers to the overall potential value of an assignment pairing between

a friendly unit and a non-friendly unit. This assignment is not necessarily a firing or

sensing assignment though it may potentially be used to that end. Rather, it is a general

assignment based on a number of potential factors such as engagement potential, tracking

benefit, the overall threat the unit may present and many others. Placing a value on such

an assignment is a necessary element and provides a means for analysis within the battle

space. These factors turn out to be critical for analysis in networked fires.

The VPA concept takes into account several factors that contribute to

assigning a particular friendly unit the responsibility of an enemy unit. As with the term

assignment, responsibility is used here in a general sense to indicate focus of attention for a

friendly unit. The idea is to take several potential factors available in the battle space that

may influence a unit’s actions, and process them in such a way that a final value or set of

values is generated. Once this is done for each potential pairing of friendly to non-friendly

units, those values are applied to an objective function designed to maximize the total value

of a particular assignment set, based on a mission goal and a user-defined set of constraints.

b. VPA Usage

For the purposes of this thesis, a set of factors was chosen to capture the

range of considerations while avoiding excessive detail. The general categories of factors

chosen are probability of kill (Pk), threat (expressed as reverse probability of kill), inherent

value of friendly and non-friendly units and the type of action engaged in (e.g. defense, peace

keeping). While this may, at first glance, appear to be a very brief list of factors that would

provide a limited factor space for exploration, indeed it is not. In each of these general areas

there are extensive considerations and assumptions that may be made.

Some of the sub-factors related to the primary factors listed above are

explored explicitly and some are explored implicitly and are presented in Table 9. The

implicit factors listed are influencing factors within the associated primary factor, which for

the purposes of this research, are considered captured to a sufficient extent in the parent

 39

factor. Explicit modeling of these factors would cloud the process and provide an increased

fidelity that is not necessary at this point in the development of DAFS.

Primary Factor Explicit Sub-Factor Implicit Sub-Factor

Probability of Kill
(Pk)

Range
Munitions
Firing unit type
Targeted unit type

Target Location Error
(TLE)
Munitions accuracy
Munitions reliability

Threat Range
Firing Enemy unit type
Targeted Friendly unit type

Munitions
Munitions accuracy
Munitions reliability

Unit Values Unit type
Scenario type

Strategic value
Monetary value

Action Type General category (attack,
defend, etc.)

Table 7. Explicit and Implicit Sub-Factors7

The use of the VPA and the associated formula used to arrive at it are the two

main variables used to evaluate the potential value to networked fires. The VPA is generated

as a result of a value formula that takes into account whatever factors have been designed

into it. For example, one might propose that the factor involved in determining the VPA from

a blue unit to a red unit is the expected value of eliminating the red unit. In this case, the VPA

would be the red unit’s pre-assigned value times the probability of killing it, which would be

a function of the range between the two units. This versatility in the VPA allows for a

variety of algorithms to be implemented to simulate a warfare or unit commander’s thought

processes when assigning weapons to targets.

c. Constrained Value Optimizer

Once a value function is chosen and the subsequent VPA values generated,

the values are applied as the coefficients in an overall objective function designed to optimize

the total benefit of all the potential assignments. Of course, the result must satisfy a given

7 Havens (2002).

 40

constraint set. To continue with the example above, a potential objective function may be to

maximize the sum of all potential assignments from blue to red. If that were the extent of it,

the solution would be easy; make all assignments that have a positive VPA. However, as is

usually the case, there are limits. In our example, suppose that each blue unit may be

assigned to at most one red unit and that a VPA greater than 25 is desired in each case. This

results in each acceptable VPA solution having to have a potential value of greater than 25

with the number of possible pairings being constrained by the assignment limitation.

Once applied, an optimized value for the sum of all the possible combinations

of assignments is generated producing an assignment set. This is a relatively standard

optimization problem. However, once a blue or red unit moves, or any other factor used in

either the VPA formula or the subsequent optimization is changed, the assignments may not

still be optimal. Managing the subsequent re-evaluation of the optimization turns out to be a

key factor in the attempt to synthesize simulation and optimization.

The portion of the simulation that evaluates the battle space information and

provides a solution to the implemented objective function is the Constrained Value Optimizer

(CVO). The term “constrained” in the name refers to the fact that the resulting optimal

solution generated by the CVO is constrained by either the passing of time or by subsequent

events that may or may not invalidate the standing solution. In this manner, the weapon and

target pairings of the warfare commander can be maintained at their optimal value at each

calculation of the VPA and CVO but may differ as the events unfold in the simulation.

B. DAFS EXECUTION

The execution of DAFS can be broken down into three distinct areas: input, runtime

and output. DAFS input is a collection of XML files that predefine every aspect of the

participants, the scenario, the nature of the runs and the desired output. Many of the input

components are independent of one another and therefore may be altered or replaced without

any affect on the remaining pieces. Others contain several related components and must

therefore be altered as a whole. However, sub elements within these larger input files may be

swapped out in the same manner as long as the integrity of the overall file remains. Runtime

for DAFS is consists of a standard discrete event simulation run that contains entities that are

intermittently controlled by the use of a local optimization routine. The output is available in

a number of formats and again, is dictated by input XML files. The user has the choice of

displaying output to the screen, writing to files, generating XML files or any combination.

XML output files are particularly beneficial as they may be altered using XML stylesheets or

queried in a number of ways to present the results.

1. Input

Figure 8 is a graphic representation of the input scheme used by DAFS. Each of the

blocks on the left side of the diagram represents a self contained XML document and the

significant contents. From this diagram, it can be seen that the simulation entities input file

must contain a significant amount of information, which is due to the nature of constructing a

unit for participation. Because the components used in the construction of a unique platform

are closely tied to each other, with respect to references, they must be generated at the same

time so that the proper associations can be made. This does not mean that every entity must

contain each of the listed items; it simply means that if any of the listed items are going to be

a part of the entity, it must be contained in the appropriate XML tag structure associated with

construction of an entity. The remaining blocks on the left side of the figure also represent

potentially discrete input files, each having a particular tag structure.

Figure 9. DAFS Input Design Structure8

8 Havens (2002).

 41

 42

As the input files are discussed in the following paragraphs, the reader may find it

useful to refer to Appendix A, which contains sample XML files. The experienced XML user

will note that the structures of the input files may be defined and validated through the use of

Document Type Definitions (DTD) or SCHEMA documents however.

The kill probabilities file contains the necessary information to generate kill

probability object instances discussed in the previous section. Each kill probability instance

covers all engagements between a particular munitions type and a particular platform type.

Therefore, once the user has defined all of the possible interactions between munitions and

platforms, this file does not need to be modified. When a new munitions type of platform

type is desired in the scenario, the user may define new kill probabilities for the new entity

and add them to the existing file. Kill probability instances should be generated to take into

account friendly fire issues. Recall, the munitions-target referee will evaluate all targets

within the munitions footprint regardless of the affiliation.

The platform values file is another file that once generated, can be used for all runs.

Within the file, each platform type is assigned a value for a given scenario type. Once the

user is happy with the choices, the file does not need to be altered unless new platforms are

added or a different scenario type has been developed. Conversely, this file represents an

excellent choice of a design point for analysis.

This simulation runner file contains the information necessary to implement the

Schedule class in Simkit. This file contains the parameters that define the simulation stop

criteria, non-data output options and the number of repetitions desired. The stopping criteria

may either be set to an elapsed time or to the occurrence of a specific event, the tenth kill for

example. The non-data output options refer to the simulation event output. The two

categories are verbose and single step. If verbose is set to true, the simulation will generate an

event list to the screen at each event change while the simulation is running. A selection of

false will yield nothing. Single step will control the simulation by allowing it to progress one

event at a time and, by definition, will invoke the verbose output method. This allows the

user to view each discrete event as it occurs. The repetitions selection will reset all

components to the original configuration and begin the simulation again. This is particularly

 43

beneficial for multiple run analysis of probabilistic scenarios as the simulation will begin the

same but will not provide the same exact run due to the implementation of different random

numbers.

The associations XML file is used to assign the listeners not already prescribed by

DAFS. DAFS automatically registers the appropriate listeners necessary to accomplish

successful running of the simulation. The associations contained in this file are for data

gathering purposes.

The middle block of Figure 8 represents the collection of XML builders that take

portions of the XML documents and use them to create the necessary JAVA objects. The

DAFS main method is responsible for farming out the appropriate XML elements to the

correct builder. In all cases, with the exception of the munitions loader and the listener

assigner, the XML builder class instantiates JAVA objects corresponding with the name of

the class. For instance, the mover maker instantiates a Simkit Mover object, the base

component for each unit in the simulation. These were presented earlier as platforms.

The listener assigner and the munitions loader each have slightly different functions

but do still convert XML file data into simulation information. The munitions loader by

munitions type loads the inventory object on each platform with the corresponding number of

rounds as initial inventory. Again referring to Figure 8, the munitions information comes

from within the large XML file of simulation entities. Specifically, the munitions element is a

sub element of the mover element. This structure is what allows the loader to associate the

munitions with the correct platform. An example of a simulation entities file is contained in

Appendix A.

The listener assigner is primarily to establish data gathering connections for

simulation monitors. Typically simple statistics objects, these monitors listen to the objects to

which they are assigned or to the simulation in general and tabulate events or property

changes. The builder file in this case serves to register the appropriate objects as listeners.

These monitor objects and their configuration is essential to retrieving usable output from a

simulation run and the concepts are discussed more fully in the output section below.

 44

2. Runtime

A DAFS simulation scenario currently involves two sides, red and blue, although

there could be an arbitrary number of sides. Each side is given its objectives through the

implementation of the mover managers and the level of aggressiveness protocol assigned to

the command element. The mover managers dictate where and how the platforms will

proceed as the simulation progresses and the aggressiveness factors dictate how the platform

will behave upon interaction with other platforms.

Additionally, the blue side is provided a scenario posture, which affects the player

values on both sides and has subsequent impact on the VPA values as they are calculated.

The implementation of the CVO is only accomplished for the blue side and assumes the red

side is using less sophisticated operational capabilities. Namely, the red side is assumed to

operate as a conventional force with standing orders for objectives and rules of engagement

(ROE) set from the beginning. The point of DAFS, at least initially, is to explore whether or

not the networking of fires and sensors by a force has greater effectiveness than fighting with

pre-designated routes, assignments, and ROE. Therefore, initial analysis with DAFS does not

assume that the opponent is implementing the same technology so there is a visible difference

in the results if indeed the networking effort has an affect.

The command control object associated with each platform provides it with a unique

engagement behavior. When a platform of one side detects an opponent platform, as in the

real world, it must do some analysis as to its course of action to follow. In the case of DAFS

platforms, this is accomplished through its ROE in the command object to determine whether

or not to engage. If the platform determines not to engage, the command element will dictate

in what manner the platform will avoid engagement and implement the appropriate mover

manager. This once again highlights the component nature of the DAFS simulation and its

resident flexibility. Rather than employ a single mover manager with differing methods for

the particular behaviors, each mover manager is a distinct object that can be removed,

replaced or added. This allows the user to maintain behaviors that have proven successful and

change only those that need further development.

If the platform elects to engage, the engagement protocol for the particular munitions

will be called. This may implement a delay time designed to emulate set-up times associated

 45

with particular delivery systems. Currently this emulation is based purely on the munitions

type and does not account for different delivery systems for the same munitions type.

The simulation will run in this manner until the designated stopping a criterion has

been met. Upon completion, the output that was designated during the XML input process

will be gathered and output according to the selected output methodology.

3. Output

Through extensive use of the listener functions described earlier, statistical objects

are created and tasked with monitoring specific events within the simulation. As a result, the

desired output is “programmed in” to any specific simulation run and subsequently provided

to the user in a predetermined format. The tally and time varying statistics objects used for

data gathering are both resident in Simkit. The tally version keeps track of simple values that

only require counting, such as the number of red players killed or the number of missiles

used. The time varying version keeps track of the level of a particular state and the

corresponding times when the value changes. This state trajectory can then be used to

retrieve quantitative values with respect to time, such as the number average number of

contacts held or total time with a certain number of contacts held. Because the information is

retained with time information, the time varying statistics object is capable of returning

values as a function of time. In this case, the time-averaged mean of contacts would be

computed by dividing the area under the curve by the current time.

Through the use of XML file writing functions in JDOM, the output values collected

by the statistics objects can be selectively written to output XML files for future analysis. As

an option, the output information may be written to the screen or to output text files. The

various outputs are selected at runtime through the input process and the associations input

document. XML output files are extremely beneficial to the user because they can be

manipulated in a number of ways to present the output. Through the use of XML stylesheets,

or XSL documents, the output values can be selectively extracted and displayed in several

forms including web pages and as graphs.

 46

C. RADAR MODEL IMPLEMENTATION

Before attempting to implement the new radar model in DAFS, a spiral

development with designated benchmarks was implemented to ensure the stability of the

model at each step and to minimize loss during coding. These benchmarks were decided

upon prior to the models full implementation as a logical train of steps to reach the

realization of the mature model in DAFS. These benchmarks also afforded an

opportunity for “tagging” of the code in a digital repository to minimize any loss due to

programming error or computer malfunction. The benchmarks for the model are outlined

below.

Benchmark 0
(24 hour model)

A simple model of a single radar sensor mover against three
identical platforms representing targets. The mover will
move around in a semi-random patrol and interact with the
platforms providing detection opportunities. The radar
sensor is modeled as a simple cookie cutter sensor with an
effective range equal to the maximum range of the sensor.

Benchmark 1 Still a simple model of a single radar sensor mover against
three platforms representing targets. In this iteration, the
platforms each have a different RCS. The cookie cutter
radar sensor now has an effective range based off of the
effective range against the target’s RCS. A delay is added to
the detection time based on the movers speed through the
distance difference between maximum range and maximum
effective range.

Benchmark 2 Still a simple model of a single radar sensor mover against
three platforms representing targets. In this iteration, the
platforms each have a different RCS. The radar sensor
retains the detection delay based on effective range and adds
a second delay based on a gamma distribution over the
remaining distance from maximum effective range to the
sensor. This gamma distribution provides a simple model of
the delay based on number of dwells to determine detection.

 47

Benchmark 3
(first stochastic)

Still a simple model with two radar sensors on the same
mover against three platforms representing targets. In this
iteration, the platforms each have a different RCS. The radar
sensor retains the detection delay based on effective range.
It calculates a probability of detection based on the number
of dwells from max detection range to the sensor. If
detection is determined to occur, then a second delay to
detection is added based off of a gamma distribution over the
remaining distance from maximum effective range to the
sensor.

Benchmark 4 The model retains all the characteristics from Benchmark 3
and adds a property of altitude to the targets. Properties of
minAltitude and maxAltitude are added to the two sensors on
the mover effectively creating a surface search and an air
search radar. This may be scrapped if it seems more feasible
to create mediators for air search radars and surface search
radars that prohibit certain types of targets.

Benchmark 5
(first DAFS
Model)

Implement a simple 2 ship model utilizing the radar sensor
and mediator in DAFS. Interceptor style missiles are not
implemented at this stage.

Benchmark 6 Continue with the simple 2 ship DAFS model implementing
helicopters and interceptor style missiles to examine a
complete AAW picture.

Benchmark 7
(Final Model)

Create a more complex scenario involving 10+ warships
with full weapons implementation in DAFS.

Table 8. Model Benchmarks

1. Simkit Implementation

Benchmarks 0 through 4 were conducted in Java utilizing Dr. Arnold Buss’

Simkit library and a second library called smdx. This second library houses the sensor,

referee, mediator, and other classes required for discrete event simulation of two

dimensional movements. These same libraries are also used as the analytical engine for

all movers and kinematic occurrences within DAFS. The two libraries were combined

with graphical display applets to form the “Sandbox,” a two-dimensional representation

of the movement modeled in Simkit. This provided a test laboratory in which the

 48

modules required for the radar model could be tested on a smaller scale to insure their

function prior to adapting them for DAFS. The actual code utilized for these modules is

located in Appendix B.

To implement the radar model in Simkit, two classes are required: the

RadarSensor class and the RadarMediator class. The RadarSensor class contains the

physical characteristics of the sensor such as Range, the mover it is assigned to, and the

sensors Prf. Other than the constructor, this class only contains the methods required to

set and retrieve the sensor information when an instance of the RadarSensor is created.

The Radar Mediator class contains the actual kinematic mathematics required of the

sensor. It includes a constructor that creates instances of a contact list and the two

random variates (a Uniform[0,1] and a Gamma[1,1] in this case) required for the

stochastic model. It also includes several methods required to set and retrieve

information from the contact list and the random variates, but the main function of the

class is encapsulated in the doEnterRange and doExitRange methods.

The doEnterRange method is activated when a contact enters the maximum range

of the sensor. The method first verifies that the sensor type is of the RadarSensor class

and then checks to see if the contact is already on the contact list. The situation when the

contact is already on the contact list occurs when a doEnterRange event for that particular

contact has already happened and the required time for detection has not elapsed. This

situation is commonly seen when the kinematic solution of the sensor and target change

before detection has occurred. If the contact is not on the contact list for the sensor, it

will be added and the detection calculations will continue.

Utilizing the same mathematics outlined in Section II and the information

manifest in the RadarSensor class, the maximum possible detection distance and the

number of glimpses from that point to the target is calculated to determine the final

probability of detection. A draw from the Uniform random variate is made and compared

to the probability of detection to determine if a detection event occurred. If the detection

was successful, a draw is made from the Gamma random variate to determine how many

dwells were required for the detection and this time is added to the transit time to

maximum detection distance to determine the delay until detection. From this

information, a Detection event is then scheduled and the method is completed.

The doExitRange method does the opposite of the doEnterRange method. It is

triggered when the contact leaves the maximum range of the sensor. If a Detection event

was scheduled but had not occurred, the method removes that event from the event list to

eliminate the possibility of detection. If the Detection event had already occurred, then

the method schedules an Undetection event which will cause the sensor to stop reporting

the target and prepare it for a new detection of the same contact. In this manner, the

contact is able to leave the detection range of the sensor and effectively be lost from

sight.

After building this implementation in Simkit, the model was tested utilizing the

graphical display applet to verify its function and to provide feedback on the settings of

the Gamma random variate. A third class, TestRadarSensorPlatform, was created to

instantiate the necessary parts and to provide an input to the model. In Benchmark 4, a

mover was assigned two radar sensors of differing ranges and tasked to move randomly

among three different platforms. Each of the platforms had a different RCS to simulate

different size of targets. The mover was placed in play and moved around interacting

with all three targets. Data was collected from the run and displayed so that it could be

examined more easily. This combination of exact positional and simulation time data and

the easy to interpret graphical aide facilitated a quicker verification of the models

function.

Figure 10. Data From Simkit Implementation of Radar Model

 49

Figure 11. Visual Display of Simkit Implementation of Radar Model

2. DAFS Implementation

Because DAFS utilizes Simkit to drive its kinematic model, the classes developed

for the Simkit implementation in the Sandbox can be plugged directly into the classes

used in DAFS with minimal changes. The only modifications necessary for the

implementation in DAFS was to change the location of where the classes pulled

information for items such as radar cross-section and prf and a change of the name of the

 50

 51

contact list within the mediator to the one that DAFS utilizes. The source code for the

classes used to implement the radar model in DAFS can be found in Appendix C.

This modular style of implementation is a hallmark of the DAFS combat model

where sensors, munitions, and other items within the simulation can be created and tested

in an outside source and then plugged into the model with little effort. This allows a

common user to develop simulation items derived from research requirements or new

developments and implement them into the model quickly.

Despite this modular architecture, not all items in the model work in this manner.

Code changes were made to several sections of the standard working code in DAFS to

account for the new sensors and to address the added information of prf and RCS. These

changes were made in separate modules designed to read the scenario database and

produce the XML version of the scenario file. Because these requirements of a naval

radar model were not incorporated into the original DAFS model, base code changes had

to be made to add them.

A second complication that arose was the model’s ability to detect munitions.

Because the DAFS model was created with ground combat as the primary concept basis,

the idea of detecting and then shooting down an inbound munition was never considered.

In naval combat, the ability to destroy an enemies inbound ASCM is a key concept to the

defense of the ship and must be accounted for. Changes to the DAFS base code were

made to allow for detectable munitions to be seen by the sensors. This also enabled the

platforms to react to these inbound treats and use their surface-to-air missiles

accordingly.

 52

THIS PAGE INTENTIONALLY LEFT BLANK

 53

IV. SCENARIO AND ANALYSIS

With the implementation of the radar model in DAFS, it is now possible to create

and analyze a more robust maritime combat scenario. Because radar is only utilized in

Anti-Surface Warfare (ASuW) and Anti-Air Warfare (AAW), this scenario does not

examine submarine combat at all. Additionally, due to the complexity of adding Defense

Counter Air (DCA) air craft, the only aircraft included in this scenario are helicopters

utilized in a search and targeting mode.

A. BASE SCENARIO DESCRIPTION

The United States Navy requires all ships scheduled to deploy overseas to

complete a combined fleet exercise where they operate in a coordinated effort within a

battle group. These battle groups consist of 7-8 ships including one aircraft carrier and a

minimum of one cruiser. During the exercises, the aircraft carrier is tasked to conduct

strike missions into a neighboring unfriendly nation requiring majority of the aircraft to

be employed in this tasking. The accompanying surface combatants are required to

provide protection to the aircraft carrier during this critical period of flight operations that

can last for days if required.

Placed in opposition to the battle group are three other surface ships. They act as

aggressor forces from the nation being attacked by the aircraft carrier and attempt to

break the protective layer of the surface vessels in an attempt to sink the aircraft carrier.

Although there are only three ships normally employed in this role, they are regenerated

from time to time to represent from 6-9 enemy combatants. This enables the Navy to

employ fewer vessels to carry out this role while still representing an equal number of

enemy ships.

Despite this equality in numbers, the battle group is always able to win these

simulated engagements. This can be attributed to a variety of reasons (superior

technology, coordinated air coverage, coordinated attacks by the battle group, etc.) but

the fact remains that the perceived belief is that a seven ship flotilla is able to adequately

 54

protect the aircraft carrier from a determined attack by up to nine aggressors. To test this

belief, the scenario will incorporate these same number and qualities of ships in a

repeated simulation to determine the veracity of this belief.

1. Scenario Units

The blue forces comprising the U.S. Navy assists represent a typical selection of

vessels that would participate in a combined fleet exercise. These forces consist of 1

aircraft carrier, 2 TICONDEROGA class cruisers, 2 Flight I/II ARLEIGH BURKE class

destroyers, 2 Flight IIA ARLEIGH BURKE class destroyers, and 4 SH-60R LAMPS

helicopters launched from the cruisers and Flight IIA destroyers . The names of the

vessels are drawn from the units of CARRIER STRIKE GROUP 5 based in Yokosuka,

Japan and are used only as a convenient naming convention. The statistics and

characteristics of the vessels are drawn from a generic profile for each class and do not

contain specific information from the actual ship.

Blue Forces Red Forces

Name Class Name Class

KITTY HAWK America Class aircraft
carrier

SHILOH

COWPENS

Ticonderoga class
cruiser

LUYANG

GUANGZHOU

WUHAN

Type052B class
destroyer

FITZGERALD

STETHEM

Flight I/II Arleigh
Burke destroyer

LANZHOU

HAIKOU

SUIHUA

TYPE052C class
destroyer

LASSEN

MUSTIN

Flight IIA Arleigh
Burke destroyer

JIAXING

PUTIAN

YICHANG

Type53H3 class
frigate

Warlord 05

Warlord 15

Warlord 25

Warlord 35

SH60-R LAMPS
helicopters

Han 05

Han15

Han 25

Zhi-9 Multi-purpose
helicopters

Table 9. List of Forces in Scenario

 55

Arrayed against the blue forces are a selection of ships from the People’s

Republic Army-Navy (PLAN) consisting of 3 Type052B GUANZHOU I class

destroyers, 3 Type052C LANZHOU II class destroyers, 3 Type53H3 JINAGWEI

frigates, and 3 Zhi-9 multi-purpose helicopters. These ship classes were chosen as

representing a selection of vessels of varying capability that are marketed as competitors

against the United States Navy. Lesser vessels such as corvettes and ASW frigates were

not chosen because they have little to no chance against an average U.S. force. Again,

actual ship names are used in the scenario for ease of reference but only a generic version

of the ship class is represented.

Each ship class was referenced in Janes’ publications to determine their physical

characteristics, sensors, and armaments. These items were further cross referenced in

other sources of unclassified military information to determine actual values for entries

such as maximum detection range, maximum missile range, size of warhead, and others

to determine the input values for the scenario. The listings of each of these classes, their

respective armaments and sensors, and the factors assigned to them in the model can be

found in Appendix D.

2. Scenario Layout

The scenario is located off the coast of San Diego, California with a geographic

center at latitude 32.5N longitude 119.0W. For the purposes of this scenario, the carrier

air wing’s strike targets are located in the vicinity of San Diego and thus require the

positioning of the battle group off the coast. Blue forces are arrayed in a defensive

perimeter around KITTY HAWK with MUSTIN operating as the shotgun destroyer. The

remaining units in the battle group remain approximately 20 nm from the center of the

formation to provide KITTY HAWK enough room to conduct flight operations on 045-

225 degree legs. COWPENS occupies the down threat position between San Diego and

the carrier. SHILOH is positioned as a protection for any ASW threats attempting to

sneak up behind the battle group as well as for ASUW threats from the seaward direction.

The remaining destroyers are placed at the remaining corners to complete the protection

perimeter. All 4 SH60-R will launch from problem start and commence a cyclic rotation

around the battle group to provide an extended sensor range.

 The red forces start from three boxes located approximately 150 NM to the south,

west, and northwest directions. These boxes allow for a random placement of the four

units assigned to them to provide a variety of dispositions as the simulation runs through

multiple executions. This random positioning also allows the simulation to test both

dispersed and massed formations of the enemy against the blue battle force. Each box is

assigned one of each class of ship and helicopter to provide an effective mix of assets.

The boxes are also located almost the same distance from the start location of the carrier

to allow for a coordinated attack on the KITTY HAWK battle group.

Figure 12. Scenario Start Positions in DAFS

 56

SHILOH

STETHEM

FITZGERALD
COWPENS

MUSTIN
K HAWK

LASSEN

Figure 13. Blue Force Positions at Scenario Start

3. Scenario Victory Conditions

For this scenario, the victory conditions for either side are determined by the

survivability of KITTY HAWK. If the blue side is able to destroy all red units and

KITTY HAWK remains, then the blue forces will have won. If the red forces are able to

destroy KITTY HAWK, no matter the extent of units lost, they will be considered the

victor.

To enable the assets to arrive at a final result, the opposing red surface units are

assigned a waypoint at KITTY HAWK’s start position and instructed to procede to that

location at best speed. The red helicopters are assigned the same waypoint but will

proceed to it at a more cautious 45 knots so as not to sprint too far ahead of the red

surface assets which provide the offensive power of the force. Both KITTY HAWK and

MUSTIN are assigned two waypoints to simulate flight operations.

 57

 58

B. DESIGN OF EXPERIMENT

This experiment has been designed to look at an outcome of a possible exercise or

combat action and not a specific design point or characteristic of the units. Because of

this, the individual factors of the experiment remain the same with the exception of the

random placement of the red forces and the stochastic results from the sensors and

munitions.

1. Factors

As was stated above, no factors were changed in this experiment. However, it is

possible to use this same model to investigate a specific characteristic of a platform,

sensor, or formation by altering one or more factors over a given range. In this manner,

the results could be statistically analyzed to see if these are a range of values that provide

good results or even the minimum or maximum value to achieve a particular effect. The

model lends itself to this type of analysis because of its stochastic nature and its short run

time. A Nearly-Orthogonal Latin Hypercube (NOLH) may also be used to vary

numerous factors and reduce the total number of simulation batches required to produce

statistical results.

2. Scenario Replications

The scenario presented above was run for 300 replications of the first 360 minutes

of the combat modeled. This represents over 1800 hours of real time naval combat

operations. The actual elapsed time to run this many simulations was just over 6 and a

half minutes. The results of all 300 runs were outputted to a Microsoft Access database

for further query and analysis.

C. ANALYSIS

The analysis of the output data was conducted at several levels to attempt to

gleam as much information from the runs as possible. Starting with the crudest

instruments of statistical analysis, raw averages were used to identify trends and possible

 59

assertions. From there, the data was further analyzed using regression models to

determine the strongest factors and to provide a deeper insight into the results.

1. Rough Analysis

The results of the data clearly indicate that the scenario tested is not an easy

victory for the blue forces. Of the 300 simulation runs conducted, KITTY HAWK

survived only 38% of them. This provides some evidence that when placed on an equal

footing, the blue forces have a less than 50% chance of providing adequate protection to

the force projection asset.

To examine this scenario further, the standard deviation of the probability of

KITTY HAWK’s survival was 48.62% providing a wide confidence interval ranging

from 0% to 86.62% chance of survival using the first standard deviation alone. This wide

confidence interval indicates that more iterations of the simulation must be run to provide

a tighter estimate of the probability of mission success. Due to database limitations in

MS Access and the limited scope of this thesis, more iterations of the scenario were not

run to provide this better estimate of KITTY HAWK’s survivability.

Continuing the examination of the results using the most basic of analysis tools,

the data is further broken down between the iterations in which the blue victory condition

was met and when it was not. Although the red casualty rate is always higher than that of

blue, the difference between the two victory rates is less than a standard deviation for

either side. This seems to indicate that the number of casualties suffered on either side

has little to do with the overall victory and is more a factor of the risk involved in the

combat scenario itself.

 Blue Victory Red Victory Std Dev
Average Blue Casualty Rate 47.13% 66.81% 22.10%
Average Red Casualty Rate 94.81% 88.80% 10.01%

Average Blue Attack Range (m) 47124.96 44682.81 9866.45
Average Red Attack Range (m) 45710.60 48816.62 9340.94

Table 10. Casualty Rates and Attack Ranges

Again, little insight can be found from the averages of the attack range for both

sides. All four ranges are at approximately 75% of the longest sensor range providing

adequate distance and time for the contact to be detected and then fired upon. The low

standard deviation (+/- less than 5nm) indicates that this average distance holds true for

the vast majority of the iterations.

Lastly, a histogram of the casualty rates was plotted to determine if any inferences

can be made from their distribution. Blue casualty rates appear to follow a bi-modal

distribution with maxima at 70% and 100%. Red casualties are similarly weighed

towards the high end but with a distribution reminiscent of a reversed exponential

distribution with the sharpest rise occurring between 90%-100%. This tends to indicate

that the red forces will almost always suffer huge casualties in their effort to sink the

KITTY HAWK. This may be do in part to the lethality of the weapons that both sides

posses, especially considering the lack of anti-missile defense in this simulation. Contrary

to this, the blue casualty level is much less predictable due to the wide dispersion of

results and the bi-modal nature of its distribution. However, the casualties suffered by

the blue forces will tend to be less than those of red based on probability.

Histogram of Casualties

0

50

100

150

200

250

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Percentage Killed

N
um

be
r o

f R
ep

et
iti

on
s

Blue Casualty Rate Red Casualty Rate

Figure 14. Histogram of Casualties

 60

Distribution of Casulaty Rates

-10%

0%

10%

20%

30%

40%

50%

60%

70%

80%

0% 20% 40% 60% 80% 100%

Percentage Casualties

Pr
ob

ab
ili

ty
Prob of Blue Casualty Rate Prob of Red Casualty Rate

Figure 15. Distribution of Casualties

2. Logistic Regression Analysis

To perform a regression analysis of the victory conditions, the number of

weapons employed and the number of detections by sensor were regressed against the

blue victory outcome. An ordinal logistic regression was used to compare the strength

and relevance of these factors to the actual outcome. Using a full factor model, the only

factors that showed significance greater than 95% was the number of YJ62 missiles

employed and the number of detections made by the KLC-1 and SPS-55 sensors.

However, in examining the marginal change that could be made by increasing or

decreasing other factors, it showed that a high number of SPS-64 or Type344 detections

would have an even greater effect than the more linear change caused by the YJ62, KLC-

1 and SPS-55 factors. Believing that the regression model was showing confounded

results due to the inter-relation between sensors and weapons, the results were next

modeled with each system regressed separately.

 61

Term Estimate Std Error ChiSquare Prob>ChiSq
Intercept[0] 1.37219214 1.954061 0.49 0.4825
100mm 0.41366395 0.4550696 0.83 0.3633
HQ9 SAM 0.0039718 0.1166069 0.00 0.9728
RGM84 -0.0407674 0.0820113 0.25 0.6191
RIM-7 -0.0348611 0.0453896 0.59 0.4425
SA-N-12 SAM -0.1108362 0.0960794 1.33 0.2487
SM2 0.01246085 0.0139856 0.79 0.3729
YJ62 SSM 0.2932848 0.0829802 12.49 0.0004
YJ81 SSM -0.0016378 0.0402029 0.00 0.9675
YJ83 SSM 0.09578909 0.0575027 2.77 0.0957
KLC-1 -0.0647346 0.0329938 3.85 0.0498
LAMPS -0.0280313 0.0326489 0.74 0.3906
SPQ9B -0.0319247 0.0733181 0.19 0.6633
SPS55 0.13489897 0.0679192 3.94 0.0470
SPS64 -0.1125853 0.4681825 0.06 0.8100
SPS67 -0.0641925 0.0470773 1.86 0.1727
Type344 0.15456565 0.4693089 0.11 0.7419
Type360 -0.0412769 0.0603391 0.47 0.4939
Type364 0.01850652 0.0463543 0.16 0.6897

Table 11. Parameter Estimates for Full Model Logistic Regression

Prediction Profiler

Bl
ue

Vi
ct

or
y

0

1

0.645

0.355

0 1 2 3 4

0.0667
100mm

-1 1 3 5 7 9 11

1.797
SA-N-12 SAM

0 2 4 6 8

2.2667
YJ62 SSM

0 5 10 15 20 25

8.22
KLC-1

5 8 11 14 17

11.033
SPS55

0 10 20 30
7.043
SPS64

0 10 20 30

6.977
Type344

Figure 16. Prediction Profiler for Selected Factors of Full Model

When modeling the probability of the blue victory condition being met as a

function of weapons employed, the dominant factor is much more discernable. Again

utilizing logistic regression, the probability of a blue victory was regressed against the

number of weapons employed. This time, the number of YJ62 and YJ83 employed were

the strongest factors, with a larger number in both indicating a stronger probability of a

blue loss. Surprisingly, the number of YJ81s employed seemed to have no effect on the

 62

outcome. A larger number of RGM-84 and RIM-7 missiles employed by the blue forces

strengthened the chance of a blue victory but not strongly in comparison to the YJ62 and

YJ83 factors.

These results tend to strengthen the idea that the main driver for red success is the

employment of its two long range anti-ship cruise missiles. This inference is

strengthened by the fact that the RGM-84 has a lesser power in predicting the outcome of

the engagement. Examining the scenario, it is noted that the red forces must kill the

KITTY HAWK to win, but do not have to kill any other vessel. However, the blue forces

are required to kill all nine of the red surface vessels to properly safeguard the carrier.

Because of this victory condition, if red simply sends a large number of missiles down

range, they have a 1 in 7 chance per missile of hitting the KITTY HAWK in a blind shot.

That gives the red forces a sizeable advantage when considering that the blue forces must

destroy nine targets instead. In this manner, the results concur with the nature of the

scenario.
Term Estimate Std Error ChiSquare Prob>ChiSq
Intercept[0] -0.3810495 0.7347278 0.27 0.6040
100mm 0.36501304 0.3889876 0.88 0.3481
HQ9 SAM 0.09814595 0.0934978 1.10 0.2938
RGM84 -0.066368 0.0752937 0.78 0.3781
RIM-7 -0.0261908 0.0443098 0.35 0.5545
SA-N-12 SAM -0.0367488 0.078451 0.22 0.6395
SM2 0.0074496 0.0130861 0.32 0.5692
YJ62 SSM 0.3263633 0.0775864 17.69 <.0001
YJ81 SSM 0.000424 0.0351885 0.00 0.9904
YJ83 SSM 0.12309246 0.0519967 5.60 0.0179

Table 12. Parameter Estimates for Logistic Regression (Weapons Only)

Prediction Profiler

Bl
ue

Vi
ct

or
y

0

1

0.643

0.357

0 1 2 3 4

0.0667
100mm

0 2 4 6 8

2.2433
HQ9 SAM

1 3 5 7 9 11 13

5.88
RGM84

0 10

1.157
RIM-7

-1 1 3 5 7 9 11

1.797
SA-N-12 SAM

0 20 40 60

21.833
SM2

0 2 4 6 8

2.2667
YJ62 SSM

0 10 20

3.787
YJ81 SSM

0 10

2.483
YJ83 SSM

Figure 17. Prediction Profiler for Weapons Factors

 63

The same analysis was conducted using sensors instead. This time, the KLC-1

was the only factor to show significance greater than 95%. However, a large number of

KLC-1 detections strengthened the probability of a blue victory instead of weakening it,

as would be expected from a red sensor. Also of interest was the Type 344 radar which

showed a strong effect to decrease the probability of a blue victory, but only when the

number of detections was greater than 10. The results from sensor detections do not

appear to provide any further inference as to the results of each iteration. This may be

due to the rational fact that sensor detections themselves cannot kill the units on either

side and therefore do not show an affect with regard to the victory conditions.
Term Estimate Std Error ChiSquare Prob>ChiSq
Intercept[0] 0.62150508 1.4619724 0.18 0.6708
KLC-1 -0.0815833 0.0318417 6.56 0.0104
LAMPS -0.0375581 0.0258144 2.12 0.1457
SPQ9B -0.0125846 0.0675714 0.03 0.8523
SPS55 0.1187855 0.0637886 3.47 0.0626
SPS64 -0.0630176 0.4391008 0.02 0.8859
SPS67 -0.0323731 0.0431501 0.56 0.4531
Type344 0.13868825 0.4412429 0.10 0.7533
Type360 -0.0362921 0.0536663 0.46 0.4989
Type36 4 0.04388598 0.0421073 1.09 0.2973

Table 13. Parameter Estimates for Logistic Regression (Sensors Only)

Prediction Profiler

Bl
ue

Vi
ct

or
y

0

1

0.582

0.418

0 5 10 15 20 25

8.19
KLC-1

10 15 20 25 30 35

22.397
LAMPS

-1 2 5 8 11

4.303
SPQ9B

5 8 11 14 17

11.033
SPS55

0 10 20 30

6.06
SPS64

20 30 40

28.72
SPS67

0 10 20 30

4.89
Type344

10 20

13.913
Type360

10 15 20 25 30 35 40

25.047
Type364

Figure 18. Prediction Profiler for Sensor Factors

3. Linear Regression Analysis

Because of the large variance demonstrated by the blue force casualty rates, a

linear regression model was created to attempt to determine the main factors. Again, the

regression models were split with one for sensors and one for weapons. Not surprisingly,
 64

 65

the regression model for weapons showed all six of the red force weapons as the

strongest factors, each with significance greater than 99%. Although this did not provide

any greater inference into the source of blue casualties, it did demonstrate that the DAFS

model was demonstrating proper causal relationships between the different units and the

end results. The regression model of the weapons also demonstrated a low R-square of

0.545 indicating that there is still a great deal of variance that cannot be explained. A

second regression model was created using the sensors as the independent factors but its

R-square was only 0.483 and was thus discarded.
Summary of Fit

RSquare 0.545243
RSquare Adj 0.53593
Root Mean Square Error 0.157666
Mean of Response 0.575152
Observations (or Sum

) Wgts
300

Analysis of Variance

Source DF Sum of
Squares

Mean
Square

F Ratio

Model 6 8.732834 1.45547 58.5499
Error 293 7.283584 0.02486 Prob > F
C.
Total

299 16.016419 <.0001

Parameter Estimates

Term Estimate Std
Error

t
Ratio

Prob>|t|

Intercept 0.1925576 0.024638 7.82 <.0001
100mm 0.0723676 0.025687 2.82 0.0052
HQ9 SAM 0.0433007 0.006374 6.79 <.0001
SA-N-12 0.0233112 0.005577 4.18 <.0001
YJ62 SSM 0.0488867 0.004857 10.06 <.0001
YJ81 SSM 0.014318 0.002478 5.78 <.0001
YJ83 SSM 0.0296865 0.003454 8.60 <.0001

Table 14. Summary of Fit and Parameter Estimates for Linear Regression Model of
Blue Casualty Rate (Weapons Only)

Similar models were created to examine the red force casualty rates but again

both models displayed R-squares of less than 0.5.

 66

4. Analysis Conclusions

The analysis conducted above provided examples of the type of statistical tools

that could be utilized in conjunction with the DAFS model. Because of the unique

capabilities of a stochastic simulation to show a variety of outcomes, a range of

possibilities could be generated for the outcome of the scenario. It also demonstrated a

rudimentary way to draw inferences from the casualty rates and provide some predictive

capability to the results of the model.

Although little additional insight was gained by the regression models, they too

demonstrated a manner to derive significant measurements from the results. In particular

when testing a new system, it would be possible from these means to decide whether the

new system showed any change in results as well as a measurement of how much change

was produced. This is also a way to determine what further study is required from a

cursory analysis where a more complex model may be necessary to determine the

significance of a factor.

 67

V. CONCLUSIONS

A. CONCLUSIONS

The Dynamic Allocation of Fires and Sensors model provides a suitable

framework for analysis of modern naval combat. It is able to provide both a point

estimate of the outcome of a given scenario as well as a means to investigate for cause

and effect. The event driven simulation methodology housed in the DAFS model

provides a timely turnaround of results with the additional enhancement of thousands of

simulation runs in a matter of hours. The results reached in the previous chapter are

merely examples of the most fundamental capabilities of the model.

The DAFS model framework provides several benefits over the current models

and methodologies employed to examine modern naval warfare. The following

advantages are specifically noted:

• Modular framework allowing for a plug-and-play architecture for quick

analysis with little information requirements. Can build a representation of

any system in question and then add it to the simulation with little

modification of other components

• Event driven simulation architecture which wastes little time when no

interactions occur while allocating adequate time for calculations and data

requirements where they are.

• Rapid simulation with multiple stochastic runs to provide both a point

estimate and an analysis of the risk and variance.

• Multiple sources of information derived from the results allowing for deeper

analysis of the outcome.

 68

B. RECOMMENDATIONS

This thesis represents a continuation of Dr. Arnold Buss and Lieutenant Michael

Havens’ work on the DAFS model. It demonstrates the possibility of using the DAFS

model to examine aspects of maritime warfare and explores a new area of combat for the

DAFS model. Continued efforts in DAFS are available in both operations research and

the modeling with the conceptual framework largely in place. However, for the model’s

potential to be fully realized, several key enhancements must be implemented to answer

the complexity of the applications needed to be explored.

Throughout the process of implementing the radar model in DAFS and modeling

modern naval combat, several design choices made early on had drastic consequences

when trying to utilize the model for a purpose other than ground combat. If these

limitations are removed, then the model can be utilized for a greater diversity of projects

and also be employed by more analytical agencies with in the military. The following

recommendations are made with regards to modularity:

• A comprehensive scrubbing of the platform organization be conducted to

allow for a more modular build. Wargaming experts could assist in this

measure by providing insight into what elements are required and how they

should be implemented

• A removal of Army specific code in the base source code (low resolution

ACQUIRE algorithm) to be replaced with a modular installment fulfilling the

same function.

• Allow for munition detection and engagement by weapons.

A second recommendation for the improvement of DAFS would be to simplify

the scenario library and Graphic User Interface (GUI) utilization. As the model is

currently constructed, there are several confusing connections in the scenario library that

make it somewhat difficult to build a scenario because of the hidden connections between

files. By incorporating a more modular design of the whole model, much of this can be

 69

alleviated. The GUI in the graphic simulation itself could also be improved. The

following recommendations are made with regards to scenario library and GUI:

• Re-write the scenario library structure so that it is more modular allowing for

a more plug-and-play approach to building platforms and missions.

• Improve the GUI to allow for importing of pre-designed maps and smaller

scale areas.

• Improve the GUI to incorporate a variable distance measurement so that the

scenario itself defines the scale of distance between points.

• Incorporate a symbol library to allow for easier recognition of the simulated

units and better display to more senior audiences.

• Scale back information presented when selecting a simulation unit in

information mode.

Lastly, for future usage by other military analysts, the DAFS model should

incorporate a standing library of platforms and sensors to allow for quick turnaround

analysis. These libraries could be created as both a classified version and an unclassified

version based on the sources of the values held within. It would also be useful to have

more control on what values are outputted by the model so that analysts may concentrate

on those measurements they deem significant. The following recommendations are made

with regard to future usage:

• Create standing libraries of platforms and scenarios to be used by analysts.

They should demonstrate all forms of combat and various missions to allow

for a baseline for less experienced analysts to build from.

• Provide more control as to the measurements produced in DAFS. It should be

a separate section within a scenario file that delineates what measurements are

to be taken from the simulation.

 70

C. FOLLOW ON RESEARCH

Besides the continuing improvements to the DAFS model, there are several

avenues for follow on research. Because this thesis merely skimmed the surface of

examining naval combat, any further analysis in either weapons capabilities or tactical

improvements would make an excellent continuation of the DAFS studies. A few more

specific areas of follow on research are listed below:

• A more thorough analysis of a vignette or scenario examined by OPNAV N-

81 would provide an excellent validation of the DAFS model as a naval

simulation.

• Examination of the LCS weapons systems as applies to unit and group defense

• Implementation of Defense Counter Air (DCA) air craft and Air Tasking

Order (ATO) flight scheduling

• Expansion of the factors in the CVO to account for greater complexity of

combat fires decisions

• Expansion of a new CVO to determine command priorities so that platforms

could shift from one role to another.

 71

APPENDIX A: SAMPLE DAFS XML FILES

The following are portions of sample files used with DAFS and are representative

of the full files used.

1. BASE SCENERIO FILE

<DAFSScenario version="2" type="Attack" bdaFactor="1" replications="1"
stopTime="400.0">
 <!--
This file was generated from jdbc:odbc:Driver={Microsoft Access Driver
(*.mdb)};DBQ=C:\Documents and Settings\Scott Hattaway\My
Documents\School Stuff\Thesis
Stuff\trunk.r1508\scenarios\NavalCombatScenerio.mdb
 at Tue Mar 04 20:44:05 PST 2008
 ProcessDBInput Version: $Id: ProcessDBInput.java 1508 2008-03-03
19:07:18Z ahbuss $
 DAFS Version: 1.0.0
-->
 <SimEntity>
 <Mover class="dafs.platform.Platform" qty="1" type="DDG51Flt1"
affiliation="Blue" assignment="combined" name="STETHEM">
 <Altitude>1</Altitude>
 <MaxSpeed>988.0</MaxSpeed>
 <CrossSection>0</CrossSection>
 <Position>
 <Grid xLoc="-20000.0" yLoc="-35000.0" />
 </Position>
 <MoverManager class="dafs.platform.DAFSPathMoverManager"
delay="0.0" startOnReset="true" />
 <Sensor id="18" type="SPY1D"
class="dafs.sensor.DAFSRadarSensor" maxRange="272700.0" prf="3" />
 <Sensor id="20" type="SPS64" class="dafs.sensor.DAFSSensor"
maxRange="21946.0" />
 <Munitions>
 <Munition type="RGM84" qty="8" />
 <Munition type="SM2" qty="60" />
 <Munition type="5InchCVT" qty="60" />
 <Munition type="20mm CIWS" qty="8" />
 <Munition type="5InchCVT" qty="60" />
 </Munitions>
 </Mover>
 <Mover class="dafs.platform.Platform" qty="1" type="DDG51Flt2A"
affiliation="Blue" assignment="combined" name="LASSEN">
 <Altitude>1</Altitude>
 <MaxSpeed>957.0</MaxSpeed>
 <CrossSection>0</CrossSection>
 <Position>
 <Grid xLoc="25000.0" yLoc="-25000.0" />
 </Position>

 72

 <MoverManager class="dafs.platform.DAFSPathMoverManager"
delay="0.0" startOnReset="true" />
 <Sensor id="15" type="SPY1D"
class="dafs.sensor.DAFSRadarSensor" maxRange="272700.0" prf="3" />
 <Sensor id="21" type="SPS64" class="dafs.sensor.DAFSSensor"
maxRange="21946.0" />
 <Sensor id="48" type="SPS67"
class="dafs.sensor.DAFSRadarSensor" maxRange="93000.0" prf="60" />
 <Munitions>
 <Munition type="SM2" qty="60" />
 <Munition type="5InchCVT" qty="60" />
 </Munitions>
 </Mover>
 <Mover class="dafs.platform.Platform" qty="1" type="DDG51Flt2A"
affiliation="Blue" assignment="combined" name="MUSTIN">
 <Altitude>1</Altitude>
 <MaxSpeed>957.0</MaxSpeed>
 <CrossSection>0</CrossSection>
 <Position>
 <Grid xLoc="3000.0" yLoc="0.0" />
 </Position>
 <MoverManager class="dafs.platform.DAFSPatrolMoverManager"
delay="0.0" startOnReset="true">
 <Waypoint xLoc="24000" yLoc="21000" Speed="1000"
mover="MUSTIN" />
 <Waypoint xLoc="-18000" yLoc="-21000" Speed="500"
mover="MUSTIN" />
 </MoverManager>
 <Sensor id="16" type="SPY1D"
class="dafs.sensor.DAFSRadarSensor" maxRange="272700.0" prf="3" />
 <Sensor id="19" type="SPS64" class="dafs.sensor.DAFSSensor"
maxRange="21946.0" />
 <Sensor id="49" type="SPS67"
class="dafs.sensor.DAFSRadarSensor" maxRange="93000.0" prf="60" />
 <Sensor id="50" type="SPS67"
class="dafs.sensor.DAFSRadarSensor" maxRange="93000.0" prf="60" />
 <Munitions>
 <Munition type="SM2" qty="60" />
 <Munition type="5InchCVT" qty="60" />
 </Munitions>
 </Mover>
 <Mover class="dafs.platform.Platform" qty="1" type="CG47"
affiliation="Blue" assignment="combined" name="SHILOH">
 <Altitude>1</Altitude>
 <MaxSpeed>926.0</MaxSpeed>
 <CrossSection>0</CrossSection>
 <Position>
 <Grid xLoc="-40000.0" yLoc="0.0" />
 </Position>
 <MoverManager class="dafs.platform.DAFSPatrolMoverManager"
delay="0.0" startOnReset="true" />
 <Sensor id="17" type="SPY1B"
class="dafs.sensor.DAFSRadarSensor" maxRange="272700.0" prf="3" />
 <Sensor id="23" type="SPQ9B" class="dafs.sensor.DAFSSensor"
maxRange="30000.0" />

 73

 <Sensor id="45" type="SPS55"
class="dafs.sensor.DAFSRadarSensor" maxRange="93000.0" prf="30" />
 <Sensor id="46" type="SPS64" class="dafs.sensor.DAFSSensor"
maxRange="21946.0" />
 <Munitions>
 <Munition type="RGM84" qty="8" />
 <Munition type="5InchCVT" qty="60" />
 <Munition type="SM2" qty="60" />
 <Munition type="20mm CIWS" qty="8" />
 <Munition type="20mm CIWS" qty="8" />
 <Munition type="5InchCVT" qty="60" />
 </Munitions>
 </Mover>
 <Mover class="dafs.platform.Platform" qty="1" type="CG47"
affiliation="Blue" assignment="combined" name="COWPENS">
 <Altitude>1</Altitude>
 <MaxSpeed>926.0</MaxSpeed>
 <CrossSection>0</CrossSection>
 <Position>
 <Grid xLoc="30000.0" yLoc="30000.0" />
 </Position>
 <MoverManager class="dafs.platform.DAFSPathMoverManager"
delay="0.0" startOnReset="true" />
 <Sensor id="13" type="SPY1B"
class="dafs.sensor.DAFSRadarSensor" maxRange="272700.0" prf="3" />
 <Sensor id="22" type="SPQ9B" class="dafs.sensor.DAFSSensor"
maxRange="30000.0" />
 <Sensor id="43" type="SPS64" class="dafs.sensor.DAFSSensor"
maxRange="21946.0" />
 <Sensor id="44" type="SPS55"
class="dafs.sensor.DAFSRadarSensor" maxRange="93000.0" prf="30" />
 <Munitions>
 <Munition type="RGM84" qty="8" />
 <Munition type="SM2" qty="60" />
 <Munition type="5InchCVT" qty="60" />
 <Munition type="5InchCVT" qty="60" />
 <Munition type="20mm CIWS" qty="8" />
 <Munition type="20mm CIWS" qty="8" />
 </Munitions>
 </Mover>
 <Mover class="dafs.platform.Platform" qty="1" type="CV"
affiliation="Blue" assignment="sensor" name="KITTYHAWK">
 <Altitude>1</Altitude>
 <MaxSpeed>988.0</MaxSpeed>
 <CrossSection>0</CrossSection>
 <Position>
 <Grid xLoc="0.0" yLoc="0.0" />
 </Position>
 <MoverManager class="dafs.platform.DAFSPatrolMoverManager"
delay="0.0" startOnReset="true">
 <Waypoint xLoc="21000" yLoc="21000" Speed="1000"
mover="KITTYHAWK" />
 <Waypoint xLoc="-21000" yLoc="-21000" Speed="500"
mover="KITTYHAWK" />
 </MoverManager>

 74

 <Sensor id="12" type="SPS67"
class="dafs.sensor.DAFSRadarSensor" maxRange="93000.0" prf="60" />
 <Sensor id="42" type="SPS48E"
class="dafs.sensor.DAFSRadarSensor" maxRange="230000.0" prf="8" />
 <Munitions>
 <Munition type="RIM-7" qty="8" />
 <Munition type="RIM-7" qty="8" />
 <Munition type="20mm CIWS" qty="8" />
 <Munition type="20mm CIWS" qty="8" />
 </Munitions>
 </Mover>
 <Mover class="dafs.platform.Platform" qty="1" type="Type052B"
affiliation="Red" assignment="combined" name="LUYANG">
 <Altitude>1</Altitude>
 <MaxSpeed>895.0</MaxSpeed>
 <CrossSection>0</CrossSection>
 <Position>
 <Box ID="5" mover="LUYANG" minX="-200000.0"
minY="200000.0" maxX="-10000.0" maxY="205000.0" />
 </Position>
 <MoverManager class="dafs.platform.DAFSPathMoverManager"
delay="0.0" startOnReset="true">
 <Waypoint xLoc="0" yLoc="0" Speed="900" mover="LUYANG"
/>
 </MoverManager>
 <Sensor id="32" type="Type344"
class="dafs.sensor.DAFSSensor" maxRange="21946.0" />
 <Sensor id="33" type="Top Plate"
class="dafs.sensor.DAFSRadarSensor" maxRange="230000.0" prf="15" />
 <Sensor id="58" type="Type364"
class="dafs.sensor.DAFSRadarSensor" maxRange="100000.0" prf="1" />
 <Munitions>
 <Munition type="100mm" qty="50" />
 <Munition type="30mm CIWS" qty="8" />
 <Munition type="30mm CIWS" qty="8" />
 <Munition type="SA-N-12 SAM" qty="48" />
 <Munition type="YJ83 SSM" qty="8" />
 </Munitions>
 </Mover>
 <Mover class="dafs.platform.Platform" qty="1" type="Type052B"
affiliation="Red" assignment="combined" name="GUANGZHOU">
 <Altitude>1</Altitude>
 <MaxSpeed>895.0</MaxSpeed>
 <CrossSection>0</CrossSection>
 <Position>
 <Box ID="8" mover="GUANGZHOU" minX="200000.0" minY="-
200000.0" maxX="-200000.0" maxY="-205000.0" />
 </Position>
 <MoverManager class="dafs.platform.DAFSPathMoverManager"
delay="0.0" startOnReset="true">
 <Waypoint xLoc="0" yLoc="0" Speed="900"
mover="GUANGZHOU" />
 </MoverManager>
 <Sensor id="28" type="Top Plate"
class="dafs.sensor.DAFSRadarSensor" maxRange="230000.0" prf="15" />

 75

 <Sensor id="29" type="Type344"
class="dafs.sensor.DAFSSensor" maxRange="21946.0" />
 <Sensor id="57" type="Type364"
class="dafs.sensor.DAFSRadarSensor" maxRange="100000.0" prf="1" />
 <Munitions>
 <Munition type="100mm" qty="50" />
 <Munition type="30mm CIWS" qty="8" />
 <Munition type="30mm CIWS" qty="8" />
 <Munition type="SA-N-12 SAM" qty="48" />
 <Munition type="YJ83 SSM" qty="8" />
 </Munitions>
 </Mover>
 <Mover class="dafs.platform.Platform" qty="1" type="Type052B"
affiliation="Red" assignment="combined" name="WUHAN">
 <Altitude>1</Altitude>
 <MaxSpeed>895.0</MaxSpeed>
 <CrossSection>0</CrossSection>
 <Position>
 <Box ID="10" mover="WUHAN" minX="-200000.0" minY="-
200000.0" maxX="-205000.0" maxY="200000.0" />
 </Position>
 <MoverManager class="dafs.platform.DAFSPathMoverManager"
delay="0.0" startOnReset="true">
 <Waypoint xLoc="0" yLoc="0" Speed="900" mover="WUHAN" />
 </MoverManager>
 <Sensor id="30" type="Type344"
class="dafs.sensor.DAFSSensor" maxRange="21946.0" />
 <Sensor id="31" type="Top Plate"
class="dafs.sensor.DAFSRadarSensor" maxRange="230000.0" prf="15" />
 <Sensor id="56" type="Type364"
class="dafs.sensor.DAFSRadarSensor" maxRange="100000.0" prf="1" />
 <Munitions>
 <Munition type="100mm" qty="50" />
 <Munition type="30mm CIWS" qty="8" />
 <Munition type="30mm CIWS" qty="8" />
 <Munition type="SA-N-12 SAM" qty="48" />
 <Munition type="YJ83 SSM" qty="8" />
 </Munitions>
 </Mover>
 <Mover class="dafs.platform.Platform" qty="1" type="Type052C"
affiliation="Red" assignment="combined" name="HAIKOU">
 <Altitude>1</Altitude>
 <MaxSpeed>895.0</MaxSpeed>
 <CrossSection>0</CrossSection>
 <Position>
 <Box ID="7" mover="HAIKOU" minX="200000.0" minY="-
200000.0" maxX="-200000.0" maxY="-205000.0" />
 </Position>
 <MoverManager class="dafs.platform.DAFSPathMoverManager"
delay="0.0" startOnReset="true">
 <Waypoint xLoc="0" yLoc="0" Speed="900" mover="HAIKOU"
/>
 </MoverManager>
 <Sensor id="24" type="Type344"
class="dafs.sensor.DAFSSensor" maxRange="21946.0" />

 76

 <Sensor id="25" type="Type348"
class="dafs.sensor.DAFSRadarSensor" maxRange="272700.0" prf="3" />
 <Sensor id="51" type="Type364"
class="dafs.sensor.DAFSRadarSensor" maxRange="100000.0" prf="1" />
 <Munitions>
 <Munition type="HQ9 SAM" qty="24" />
 <Munition type="100mm" qty="50" />
 <Munition type="YJ62 SSM" qty="8" />
 <Munition type="30mm CIWS" qty="8" />
 <Munition type="30mm CIWS" qty="8" />
 </Munitions>
 </Mover>
 <Mover class="dafs.platform.Platform" qty="1" type="Type052C"
affiliation="Red" assignment="combined" name="SUIHUA">
 <Altitude>1</Altitude>
 <MaxSpeed>895.0</MaxSpeed>
 <CrossSection>0</CrossSection>
 <Position>
 <Box ID="9" mover="SUIHUA" minX="-200000.0" minY="-
200000.0" maxX="-205000.0" maxY="200000.0" />
 </Position>
 <MoverManager class="dafs.platform.DAFSPathMoverManager"
delay="0.0" startOnReset="true">
 <Waypoint xLoc="0" yLoc="0" Speed="900" mover="SUIHUA"
/>
 </MoverManager>
 <Sensor id="53" type="Type364"
class="dafs.sensor.DAFSRadarSensor" maxRange="100000.0" prf="1" />
 <Sensor id="54" type="Type348"
class="dafs.sensor.DAFSRadarSensor" maxRange="272700.0" prf="3" />
 <Sensor id="55" type="Type344"
class="dafs.sensor.DAFSSensor" maxRange="21946.0" />
 <Munitions>
 <Munition type="HQ9 SAM" qty="24" />
 <Munition type="100mm" qty="50" />
 <Munition type="YJ62 SSM" qty="8" />
 <Munition type="30mm CIWS" qty="8" />
 <Munition type="30mm CIWS" qty="8" />
 </Munitions>
 </Mover>
 <Mover class="dafs.platform.Platform" qty="1" type="Type053H3"
affiliation="Red" assignment="combined" name="JIAXING">
 <Altitude>1</Altitude>
 <MaxSpeed>988.0</MaxSpeed>
 <CrossSection>0</CrossSection>
 <Position>
 <Box ID="11" mover="JIAXING" minX="-200000.0"
minY="200000.0" maxX="-10000.0" maxY="205000.0" />
 </Position>
 <MoverManager class="dafs.platform.DAFSPathMoverManager"
delay="0.0" startOnReset="true">
 <Waypoint xLoc="0" yLoc="0" Speed="900" mover="JIAXING"
/>
 </MoverManager>

 77

 <Sensor id="34" type="Type344"
class="dafs.sensor.DAFSSensor" maxRange="21946.0" />
 <Sensor id="61" type="Type364"
class="dafs.sensor.DAFSRadarSensor" maxRange="100000.0" prf="1" />
 <Munitions>
 <Munition type="100mm" qty="50" />
 <Munition type="HQ7 SAM" qty="8" />
 <Munition type="YJ81 SSM" qty="16" />
 <Munition type="100mm" qty="50" />
 </Munitions>
 </Mover>
 <Mover class="dafs.platform.Platform" qty="1" type="Type053H3"
affiliation="Red" assignment="combined" name="PUTIAN">
 <Altitude>1</Altitude>
 <MaxSpeed>988.0</MaxSpeed>
 <CrossSection>0</CrossSection>
 <Position>
 <Box ID="12" mover="PUTIAN" minX="200000.0" minY="-
200000.0" maxX="-200000.0" maxY="-205000.0" />
 </Position>
 <MoverManager class="dafs.platform.DAFSPathMoverManager"
delay="0.0" startOnReset="true">
 <Waypoint xLoc="0" yLoc="0" Speed="900" mover="PUTIAN"
/>
 </MoverManager>
 <Sensor id="35" type="Type344"
class="dafs.sensor.DAFSSensor" maxRange="21946.0" />
 <Sensor id="60" type="Type364"
class="dafs.sensor.DAFSRadarSensor" maxRange="100000.0" prf="1" />
 <Munitions>
 <Munition type="100mm" qty="50" />
 <Munition type="HQ7 SAM" qty="8" />
 <Munition type="YJ81 SSM" qty="16" />
 <Munition type="100mm" qty="50" />
 </Munitions>
 </Mover>
 <Mover class="dafs.platform.Platform" qty="1" type="Type053H3"
affiliation="Red" assignment="combined" name="YICHANG">
 <Altitude>1</Altitude>
 <MaxSpeed>988.0</MaxSpeed>
 <CrossSection>0</CrossSection>
 <Position>
 <Box ID="13" mover="YICHANG" minX="-200000.0" minY="-
200000.0" maxX="-205000.0" maxY="200000.0" />
 </Position>
 <MoverManager class="dafs.platform.DAFSPathMoverManager"
delay="0.0" startOnReset="true">
 <Waypoint xLoc="0" yLoc="0" Speed="900" mover="YICHANG"
/>
 </MoverManager>
 <Sensor id="36" type="Type344"
class="dafs.sensor.DAFSSensor" maxRange="21946.0" />
 <Sensor id="59" type="Type364"
class="dafs.sensor.DAFSRadarSensor" maxRange="100000.0" prf="1" />
 <Munitions>

 78

 <Munition type="100mm" qty="50" />
 <Munition type="HQ7 SAM" qty="8" />
 <Munition type="YJ81 SSM" qty="16" />
 <Munition type="100mm" qty="50" />
 </Munitions>
 </Mover>
 <Mover class="dafs.platform.Platform" qty="1" type="SH60R"
affiliation="Blue" assignment="sensor" name="Warlord05">
 <Altitude>1000</Altitude>
 <MaxSpeed>3000.0</MaxSpeed>
 <CrossSection>10</CrossSection>
 <OperationalEndurance>0.0</OperationalEndurance>
 <Position>
 <Grid xLoc="30000.0" yLoc="30000.0" />
 </Position>
 <MoverManager class="dafs.platform.DAFSPatrolMoverManager"
delay="0.0" startOnReset="true">
 <Waypoint xLoc="0" yLoc="70000" Speed="2000"
mover="Warlord05" />
 <Waypoint xLoc="-50000" yLoc="50000" Speed="2000"
mover="Warlord05" />
 <Waypoint xLoc="-70000" yLoc="0" Speed="2000"
mover="Warlord05" />
 <Waypoint xLoc="-50000" yLoc="-50000" Speed="2000"
mover="Warlord05" />
 <Waypoint xLoc="0" yLoc="-70000" Speed="2000"
mover="Warlord05" />
 <Waypoint xLoc="50000" yLoc="-50000" Speed="2000"
mover="Warlord05" />
 <Waypoint xLoc="70000" yLoc="0" Speed="2000"
mover="Warlord05" />
 <Waypoint xLoc="50000" yLoc="50000" Speed="2000"
mover="Warlord05" />
 </MoverManager>
 <Sensor id="37" type="LAMPS" class="dafs.sensor.DAFSSensor"
maxRange="60000.0" />
 <Munitions />
 </Mover>
 <Mover class="dafs.platform.Platform" qty="1" type="SH60R"
affiliation="Blue" assignment="sensor" name="Warlord15">
 <Altitude>1000</Altitude>
 <MaxSpeed>3000.0</MaxSpeed>
 <CrossSection>10</CrossSection>
 <OperationalEndurance>0.0</OperationalEndurance>
 <Position>
 <Grid xLoc="25000.0" yLoc="-25000.0" />
 </Position>
 <MoverManager class="dafs.platform.DAFSPatrolMoverManager"
delay="0.0" startOnReset="true">
 <Waypoint xLoc="70000" yLoc="0" Speed="2000"
mover="Warlord15" />
 <Waypoint xLoc="50000" yLoc="50000" Speed="2000"
mover="Warlord15" />
 <Waypoint xLoc="0" yLoc="70000" Speed="2000"
mover="Warlord15" />

 79

 <Waypoint xLoc="-50000" yLoc="50000" Speed="2000"
mover="Warlord15" />
 <Waypoint xLoc="-70000" yLoc="0" Speed="2000"
mover="Warlord15" />
 <Waypoint xLoc="-50000" yLoc="-50000" Speed="2000"
mover="Warlord15" />
 <Waypoint xLoc="0" yLoc="-70000" Speed="2000"
mover="Warlord15" />
 <Waypoint xLoc="50000" yLoc="-50000" Speed="2000"
mover="Warlord15" />
 </MoverManager>
 <Sensor id="38" type="LAMPS" class="dafs.sensor.DAFSSensor"
maxRange="60000.0" />
 <Munitions />
 </Mover>
 <Mover class="dafs.platform.Platform" qty="1" type="SH60R"
affiliation="Blue" assignment="sensor" name="Warlord25">
 <Altitude>1000</Altitude>
 <MaxSpeed>3000.0</MaxSpeed>
 <CrossSection>10</CrossSection>
 <OperationalEndurance>0.0</OperationalEndurance>
 <Position>
 <Grid xLoc="3000.0" yLoc="0.0" />
 </Position>
 <MoverManager class="dafs.platform.DAFSPatrolMoverManager"
delay="0.0" startOnReset="true">
 <Waypoint xLoc="-70000" yLoc="0" Speed="2300"
mover="Warlord25" />
 <Waypoint xLoc="-50000" yLoc="-50000" Speed="2000"
mover="Warlord25" />
 <Waypoint xLoc="0" yLoc="-70000" Speed="2000"
mover="Warlord25" />
 <Waypoint xLoc="50000" yLoc="-50000" Speed="2000"
mover="Warlord25" />
 <Waypoint xLoc="70000" yLoc="0" Speed="2000"
mover="Warlord25" />
 <Waypoint xLoc="50000" yLoc="50000" Speed="2000"
mover="Warlord25" />
 <Waypoint xLoc="0" yLoc="70000" Speed="2000"
mover="Warlord25" />
 <Waypoint xLoc="-50000" yLoc="50000" Speed="2000"
mover="Warlord25" />
 </MoverManager>
 <Sensor id="39" type="LAMPS" class="dafs.sensor.DAFSSensor"
maxRange="60000.0" />
 <Munitions />
 </Mover>
 <Mover class="dafs.platform.Platform" qty="1" type="SH60R"
affiliation="Blue" assignment="sensor" name="Warlord35">
 <Altitude>1000</Altitude>
 <MaxSpeed>3000.0</MaxSpeed>
 <CrossSection>10</CrossSection>
 <OperationalEndurance>0.0</OperationalEndurance>
 <Position>
 <Grid xLoc="-40000.0" yLoc="0.0" />

 80

 </Position>
 <MoverManager class="dafs.platform.DAFSPatrolMoverManager"
delay="0.0" startOnReset="true">
 <Waypoint xLoc="0" yLoc="-70000" Speed="2000"
mover="Warlord35" />
 <Waypoint xLoc="50000" yLoc="-50000" Speed="2000"
mover="Warlord35" />
 <Waypoint xLoc="70000" yLoc="0" Speed="2000"
mover="Warlord35" />
 <Waypoint xLoc="50000" yLoc="50000" Speed="2000"
mover="Warlord35" />
 <Waypoint xLoc="0" yLoc="70000" Speed="2000"
mover="Warlord35" />
 <Waypoint xLoc="-50000" yLoc="50000" Speed="2000"
mover="Warlord35" />
 <Waypoint xLoc="-70000" yLoc="0" Speed="2000"
mover="Warlord35" />
 <Waypoint xLoc="-50000" yLoc="-50000" Speed="2000"
mover="Warlord35" />
 </MoverManager>
 <Sensor id="40" type="LAMPS" class="dafs.sensor.DAFSSensor"
maxRange="60000.0" />
 <Munitions />
 </Mover>
 <Mover class="dafs.platform.Platform" qty="1" type="DDG51Flt1"
affiliation="Blue" assignment="combined" name="FITZGERALD">
 <Altitude>1</Altitude>
 <MaxSpeed>988.0</MaxSpeed>
 <CrossSection>0</CrossSection>
 <Position>
 <Grid xLoc="-20000.0" yLoc="35000.0" />
 </Position>
 <MoverManager class="dafs.platform.DAFSPathMoverManager"
delay="0.0" startOnReset="true" />
 <Sensor id="1" type="SPS64" class="dafs.sensor.DAFSSensor"
maxRange="21946.0" />
 <Sensor id="14" type="SPY1D"
class="dafs.sensor.DAFSRadarSensor" maxRange="272700.0" prf="3" />
 <Sensor id="47" type="SPS67"
class="dafs.sensor.DAFSRadarSensor" maxRange="93000.0" prf="60" />
 <Munitions>
 <Munition type="20mm CIWS" qty="8" />
 <Munition type="20mm CIWS" qty="8" />
 <Munition type="RGM84" qty="8" />
 <Munition type="SM2" qty="60" />
 <Munition type="5InchCVT" qty="60" />
 </Munitions>
 </Mover>
 <Mover class="dafs.platform.Platform" qty="1" type="Type052C"
affiliation="Red" assignment="combined" name="LANZHOU">
 <Altitude>1</Altitude>
 <MaxSpeed>895.0</MaxSpeed>
 <CrossSection>0</CrossSection>
 <Position>

 81

 <Box ID="6" mover="LANZHOU" minX="-200000.0"
minY="200000.0" maxX="-10000.0" maxY="205000.0" />
 </Position>
 <MoverManager class="dafs.platform.DAFSPathMoverManager"
delay="0.0" startOnReset="true">
 <Waypoint xLoc="0" yLoc="0" Speed="900" mover="LANZHOU"
/>
 </MoverManager>
 <Sensor id="2" type="Type344" class="dafs.sensor.DAFSSensor"
maxRange="21946.0" />
 <Sensor id="26" type="Type348"
class="dafs.sensor.DAFSRadarSensor" maxRange="272700.0" prf="3" />
 <Sensor id="52" type="Type364"
class="dafs.sensor.DAFSRadarSensor" maxRange="100000.0" prf="1" />
 <Munitions>
 <Munition type="YJ62 SSM" qty="8" />
 <Munition type="30mm CIWS" qty="8" />
 <Munition type="30mm CIWS" qty="8" />
 <Munition type="HQ9 SAM" qty="24" />
 <Munition type="100mm" qty="50" />
 </Munitions>
 </Mover>
 <CVO class="dafs.command.CVO2" type="fires" name="Fires CVO">
 <Property name="maxAssign" value="10"
class="java.lang.Integer" />
 <Property name="maxCover" value="10"
class="java.lang.Integer" />
 <Property name="minCover" value="0"
class="java.lang.Integer" />
 <Property name="implementationInterval" value="1.1"
class="java.lang.Double" />
 <Property name="print" value="true"
class="java.lang.Boolean" />
 <VPA class="dafs.command.OutsideRangeVPA">
 <Property name="minPK" value="0"
class="java.lang.Double" />
 <Property name="maxThreatPK" value="0.8"
class="java.lang.Double" />
 </VPA>
 </CVO>
 <CVO class="dafs.command.CVOforBDA" type="sensor" name="BDA
CVO">
 <Property name="maxAssign" value="100"
class="java.lang.Integer" />
 <Property name="maxCover" value="4"
class="java.lang.Integer" />
 <Property name="minCover" value="0"
class="java.lang.Integer" />
 <Property name="implementationInterval" value="1.2"
class="java.lang.Double" />
 <Property name="print" value="false"
class="java.lang.Boolean" />
 <VPA class="dafs.command.VPAforBDA" />
 </CVO>
 <Listener source="Fires CVO" listener="BDA CVO" />

 82

 <Mediator sensorClass="dafs.sensor.DAFSSensor"
targetClass="dafs.platform.Platform"
mediatorClass="dafs.sensor.DAFSCookieCutterMediator" />
 <Mediator sensorClass="dafs.sensor.DAFSRadarSensor"
targetClass="dafs.platform.Platform"
mediatorClass="dafs.sensor.DAFSRadarMediator" />
 <Mediator sensorClass="dafs.sensor.DAFSRadarSensor"
targetClass="dafs.weapon.DAFSCircularImpactMunition"
mediatorClass="dafs.sensor.DAFSCookieCutterMediator" />
 </SimEntity>
 <MunitionsTypes>
 <MunitionType>
 <MUNITION>RGM84</MUNITION>
 <WEIGHT>222.0</WEIGHT>
 <MER>1.0</MER>
 <MINRANGE>2000.0</MINRANGE>
 <MAXRANGE>146304.0</MAXRANGE>
 <LOAD>8.0</LOAD>
 <SPEED>16915.0</SPEED>
 <ALGORITHM>OLD_DAFS</ALGORITHM>
 <BURST_SIZE>1</BURST_SIZE>
 <SUBMUNITION_COUNT>1</SUBMUNITION_COUNT>
 <Detectable>true</Detectable>
 <CrossSection>5.0</CrossSection>
 </MunitionType>
 <MunitionType>
 <MUNITION>SM2</MUNITION>
 <WEIGHT>90.0</WEIGHT>
 <MER>1.0</MER>
 <MINRANGE>500.0</MINRANGE>
 <MAXRANGE>180000.0</MAXRANGE>
 <LOAD>60.0</LOAD>
 <SPEED>49750.0</SPEED>
 <ALGORITHM>OLD_DAFS</ALGORITHM>
 <BURST_SIZE>1</BURST_SIZE>
 <SUBMUNITION_COUNT>1</SUBMUNITION_COUNT>
 <Detectable>true</Detectable>
 <CrossSection>10.0</CrossSection>
 </MunitionType>
 <MunitionType>
 <MUNITION>20mm CIWS</MUNITION>
 <WEIGHT>50.0</WEIGHT>
 <MER>1.0</MER>
 <MINRANGE>5.0</MINRANGE>
 <MAXRANGE>2000.0</MAXRANGE>
 <LOAD>8.0</LOAD>
 <SPEED>13000.0</SPEED>
 <ALGORITHM>OLD_DAFS</ALGORITHM>
 <BURST_SIZE>1</BURST_SIZE>
 <SUBMUNITION_COUNT>1</SUBMUNITION_COUNT>
 <Detectable>false</Detectable>
 </MunitionType>
 <MunitionType>
 <MUNITION>5InchCVT</MUNITION>
 <WEIGHT>75.0</WEIGHT>

 83

 <MER>1.0</MER>
 <MINRANGE>500.0</MINRANGE>
 <MAXRANGE>18200.0</MAXRANGE>
 <LOAD>60.0</LOAD>
 <SPEED>13000.0</SPEED>
 <ALGORITHM>OLD_DAFS</ALGORITHM>
 <BURST_SIZE>1</BURST_SIZE>
 <SUBMUNITION_COUNT>1</SUBMUNITION_COUNT>
 <Detectable>false</Detectable>
 </MunitionType>
 <MunitionType>
 <MUNITION>YJ62 SSM</MUNITION>
 <WEIGHT>300.0</WEIGHT>
 <MER>1.0</MER>
 <MINRANGE>2000.0</MINRANGE>
 <MAXRANGE>300000.0</MAXRANGE>
 <LOAD>8.0</LOAD>
 <SPEED>17910.0</SPEED>
 <ALGORITHM>OLD_DAFS</ALGORITHM>
 <BURST_SIZE>1</BURST_SIZE>
 <SUBMUNITION_COUNT>1</SUBMUNITION_COUNT>
 <Detectable>true</Detectable>
 <CrossSection>10.0</CrossSection>
 </MunitionType>
 <MunitionType>
 <MUNITION>HQ9 SAM</MUNITION>
 <WEIGHT>200.0</WEIGHT>
 <MER>1.0</MER>
 <MINRANGE>500.0</MINRANGE>
 <MAXRANGE>90000.0</MAXRANGE>
 <LOAD>24.0</LOAD>
 <SPEED>79600.0</SPEED>
 <ALGORITHM>OLD_DAFS</ALGORITHM>
 <BURST_SIZE>1</BURST_SIZE>
 <SUBMUNITION_COUNT>1</SUBMUNITION_COUNT>
 <Detectable>false</Detectable>
 <CrossSection>0.0</CrossSection>
 </MunitionType>
 <MunitionType>
 <MUNITION>30mm CIWS</MUNITION>
 <WEIGHT>50.0</WEIGHT>
 <MER>1.0</MER>
 <MINRANGE>5.0</MINRANGE>
 <MAXRANGE>2000.0</MAXRANGE>
 <LOAD>8.0</LOAD>
 <SPEED>13000.0</SPEED>
 <ALGORITHM>OLD_DAFS</ALGORITHM>
 <BURST_SIZE>1</BURST_SIZE>
 <SUBMUNITION_COUNT>1</SUBMUNITION_COUNT>
 <Detectable>false</Detectable>
 </MunitionType>
 <MunitionType>
 <MUNITION>100mm</MUNITION>
 <WEIGHT>75.0</WEIGHT>
 <MER>1.0</MER>

 84

 <MINRANGE>500.0</MINRANGE>
 <MAXRANGE>18200.0</MAXRANGE>
 <LOAD>50.0</LOAD>
 <SPEED>13000.0</SPEED>
 <ALGORITHM>OLD_DAFS</ALGORITHM>
 <BURST_SIZE>1</BURST_SIZE>
 <SUBMUNITION_COUNT>1</SUBMUNITION_COUNT>
 <Detectable>false</Detectable>
 </MunitionType>
 <MunitionType>
 <MUNITION>RIM-7</MUNITION>
 <WEIGHT>39.0</WEIGHT>
 <MER>1.0</MER>
 <MINRANGE>500.0</MINRANGE>
 <MAXRANGE>16000.0</MAXRANGE>
 <LOAD>8.0</LOAD>
 <SPEED>49750.0</SPEED>
 <ALGORITHM>OLD_DAFS</ALGORITHM>
 <BURST_SIZE>1</BURST_SIZE>
 <SUBMUNITION_COUNT>1</SUBMUNITION_COUNT>
 <Detectable>false</Detectable>
 <CrossSection>0.0</CrossSection>
 </MunitionType>
 <MunitionType>
 <MUNITION>SA-N-12 SAM</MUNITION>
 <WEIGHT>200.0</WEIGHT>
 <MER>1.0</MER>
 <MINRANGE>500.0</MINRANGE>
 <MAXRANGE>50000.0</MAXRANGE>
 <LOAD>48.0</LOAD>
 <SPEED>59700.0</SPEED>
 <ALGORITHM>OLD_DAFS</ALGORITHM>
 <BURST_SIZE>1</BURST_SIZE>
 <SUBMUNITION_COUNT>1</SUBMUNITION_COUNT>
 <Detectable>false</Detectable>
 <CrossSection>0.0</CrossSection>
 </MunitionType>
 <MunitionType>
 <MUNITION>YJ81 SSM</MUNITION>
 <WEIGHT>165.0</WEIGHT>
 <MER>1.0</MER>
 <MINRANGE>2000.0</MINRANGE>
 <MAXRANGE>80000.0</MAXRANGE>
 <LOAD>16.0</LOAD>
 <SPEED>17910.0</SPEED>
 <ALGORITHM>OLD_DAFS</ALGORITHM>
 <BURST_SIZE>1</BURST_SIZE>
 <SUBMUNITION_COUNT>1</SUBMUNITION_COUNT>
 <Detectable>true</Detectable>
 <CrossSection>10.0</CrossSection>
 </MunitionType>
 <MunitionType>
 <MUNITION>YJ83 SSM</MUNITION>
 <WEIGHT>165.0</WEIGHT>
 <MER>1.0</MER>

 85

 <MINRANGE>2000.0</MINRANGE>
 <MAXRANGE>250000.0</MAXRANGE>
 <LOAD>8.0</LOAD>
 <SPEED>25870.0</SPEED>
 <ALGORITHM>OLD_DAFS</ALGORITHM>
 <BURST_SIZE>1</BURST_SIZE>
 <SUBMUNITION_COUNT>1</SUBMUNITION_COUNT>
 <Detectable>true</Detectable>
 <CrossSection>10.0</CrossSection>
 </MunitionType>
 <MunitionType>
 <MUNITION>HQ7 SAM</MUNITION>
 <WEIGHT>200.0</WEIGHT>
 <MER>1.0</MER>
 <MINRANGE>5.0</MINRANGE>
 <MAXRANGE>10000.0</MAXRANGE>
 <LOAD>8.0</LOAD>
 <SPEED>45770.0</SPEED>
 <ALGORITHM>OLD_DAFS</ALGORITHM>
 <BURST_SIZE>1</BURST_SIZE>
 <SUBMUNITION_COUNT>1</SUBMUNITION_COUNT>
 <Detectable>false</Detectable>
 <CrossSection>0.0</CrossSection>
 </MunitionType>
 </MunitionsTypes>
 <SensorTypes>
 <SensorType name="SPY1D" maxRange="272700.0" prf="3"
class="dafs.sensor.DAFSRadarSensor" />
 <SensorType name="Type348" maxRange="272700.0" prf="3"
class="dafs.sensor.DAFSRadarSensor" />
 <SensorType name="SPS64" maxRange="21946.0" prf="30"
class="dafs.sensor.DAFSSensor" />
 <SensorType name="Type344" maxRange="21946.0" prf="30"
class="dafs.sensor.DAFSSensor" />
 <SensorType name="LAMPS" maxRange="60000.0" prf="60"
class="dafs.sensor.DAFSSensor" />
 <SensorType name="SPQ9B" maxRange="30000.0" prf="60"
class="dafs.sensor.DAFSSensor" />
 <SensorType name="Top Plate" maxRange="230000.0" prf="15"
class="dafs.sensor.DAFSRadarSensor" />
 <SensorType name="SPS48E" maxRange="230000.0" prf="8"
class="dafs.sensor.DAFSRadarSensor" />
 <SensorType name="SPS67" maxRange="93000.0" prf="60"
class="dafs.sensor.DAFSRadarSensor" />
 <SensorType name="SPY1B" maxRange="272700.0" prf="3"
class="dafs.sensor.DAFSRadarSensor" />
 <SensorType name="Type364" maxRange="100000.0" prf="1"
class="dafs.sensor.DAFSRadarSensor" />
 <SensorType name="SPS55" maxRange="93000.0" prf="30"
class="dafs.sensor.DAFSRadarSensor" />
 </SensorTypes>
 <DamageDataHolder />
</DAFSScenario>

 86

2. PLATFORM VALUES

<PlatformValues>
 <ScenarioValues scenarioType="Attack">
 <Value platformType="YJ82 SSM">3000.0</Value>
 <Value platformType="YJ81 SSM">3000.0</Value>
 <Value platformType="DDG51Flt1">8950.0</Value>
 <Value platformType="Type052C">7000.0</Value>
 <Value platformType="RGM84">3000.0</Value>
 <Value platformType="YJ62 SSM">3000.0</Value>
 <Value platformType="SM2">2000.0</Value>
 <Value platformType="HQ9SAM">2000.0</Value>
 <Value platformType="SH60R">1000.0</Value>
 <Value platformType="Type052B">7000.0</Value>
 <Value platformType="Type053H3">3250.0</Value>
 <Value platformType="CG47">9957.0</Value>
 <Value platformType="CV">83960.0</Value>
 <Value platformType="DDG51Flt2A">9188.0</Value>
 <Value platformType="Zhi-9 Helo">1000.0</Value>
 </ScenarioValues>
 </PlatformValues>

 87

3. KILL PROBABILITIES

 <KillProbabilities>
 <KillProbability munitionType="100mm" platformType="DDG51Flt1"
class="dafs.weapon.LinearKillProbability">
 <Params minRangePK="0.01" maxRangePK="0.0050"
minRange="500.0" maxRange="18000.0" />
 </KillProbability>
 <KillProbability munitionType="20mm CIWS" platformType="YJ62
SSM" class="dafs.weapon.LinearKillProbability">
 <Params minRangePK="0.4" maxRangePK="0.3" minRange="5.0"
maxRange="2000.0" />
 </KillProbability>
 <KillProbability munitionType="30mm CIWS" platformType="RGM84"
class="dafs.weapon.LinearKillProbability">
 <Params minRangePK="0.4" maxRangePK="0.3" minRange="5.0"
maxRange="2000.0" />
 </KillProbability>
 <KillProbability munitionType="5InchCVT" platformType="Type052C"
class="dafs.weapon.LinearKillProbability">
 <Params minRangePK="0.01" maxRangePK="0.0050"
minRange="500.0" maxRange="18000.0" />
 </KillProbability>
 <KillProbability munitionType="HQ9 SAM" platformType="RGM84"
class="dafs.weapon.LinearKillProbability">
 <Params minRangePK="0.6" maxRangePK="0.6" minRange="500.0"
maxRange="90000.0" />
 </KillProbability>
 <KillProbability munitionType="RGM84" platformType="Type052C"
class="dafs.weapon.LinearKillProbability">
 <Params minRangePK="0.8" maxRangePK="0.6" minRange="2000.0"
maxRange="146304.0" />
 </KillProbability>
 <KillProbability munitionType="SM2" platformType="YJ62 SSM"
class="dafs.weapon.LinearKillProbability">
 <Params minRangePK="0.7" maxRangePK="0.6" minRange="500.0"
maxRange="180000.0" />
 </KillProbability>
 <KillProbability munitionType="YJ62 SSM"
platformType="DDG51Flt1" class="dafs.weapon.LinearKillProbability">
 <Params minRangePK="0.8" maxRangePK="0.6" minRange="2000.0"
maxRange="300000.0" />
 </KillProbability>
 <KillProbability munitionType="20mm CIWS" platformType="YJ81
SSM" class="dafs.weapon.LinearKillProbability">
 <Params minRangePK="0.4" maxRangePK="0.3" minRange="5.0"
maxRange="2000.0" />
 </KillProbability>
 <KillProbability munitionType="20mm CIWS" platformType="YJ82
SSM" class="dafs.weapon.LinearKillProbability">
 <Params minRangePK="0.4" maxRangePK="0.3" minRange="5.0"
maxRange="2000.0" />
 </KillProbability>

 88

 <KillProbability munitionType="RGM84" platformType="Type052B"
class="dafs.weapon.LinearKillProbability">
 <Params minRangePK="0.8" maxRangePK="0.6" minRange="2000.0"
maxRange="146304.0" />
 </KillProbability>
 <KillProbability munitionType="RGM84" platformType="Type053H3"
class="dafs.weapon.LinearKillProbability">
 <Params minRangePK="0.9" maxRangePK="0.7" minRange="2000.0"
maxRange="146304.0" />
 </KillProbability>
 <KillProbability munitionType="RIM-7" platformType="YJ81 SSM"
class="dafs.weapon.LinearKillProbability">
 <Params minRangePK="0.5" maxRangePK="0.3" minRange="500.0"
maxRange="16000.0" />
 </KillProbability>
 <KillProbability munitionType="RIM-7" platformType="YJ82 SSM"
class="dafs.weapon.LinearKillProbability">
 <Params minRangePK="0.5" maxRangePK="0.3" minRange="500.0"
maxRange="16000.0" />
 </KillProbability>
 <KillProbability munitionType="SM2" platformType="YJ81 SSM"
class="dafs.weapon.LinearKillProbability">
 <Params minRangePK="0.7" maxRangePK="0.6" minRange="500.0"
maxRange="180000.0" />
 </KillProbability>
 <KillProbability munitionType="SM2" platformType="YJ82 SSM"
class="dafs.weapon.LinearKillProbability">
 <Params minRangePK="0.7" maxRangePK="0.6" minRange="500.0"
maxRange="180000.0" />
 </KillProbability>
 <KillProbability munitionType="YJ81 SSM" platformType="CG47"
class="dafs.weapon.LinearKillProbability">
 <Params minRangePK="0.6" maxRangePK="0.4" minRange="2000.0"
maxRange="80000.0" />
 </KillProbability>
 <KillProbability munitionType="YJ81 SSM" platformType="CV"
class="dafs.weapon.LinearKillProbability">
 <Params minRangePK="0.3" maxRangePK="0.1" minRange="2000.0"
maxRange="80000.0" />
 </KillProbability>
 <KillProbability munitionType="YJ81 SSM"
platformType="DDG51Flt1" class="dafs.weapon.LinearKillProbability">
 <Params minRangePK="0.6" maxRangePK="0.4" minRange="2000.0"
maxRange="80000.0" />
 </KillProbability>
 <KillProbability munitionType="YJ81 SSM"
platformType="DDG51Flt2A" class="dafs.weapon.LinearKillProbability">
 <Params minRangePK="0.6" maxRangePK="0.4" minRange="2000.0"
maxRange="80000.0" />
 </KillProbability>
 <KillProbability munitionType="SA-N-12 SAM" platformType="SH60R"
class="dafs.weapon.LinearKillProbability">
 <Params minRangePK="0.7" maxRangePK="0.6" minRange="500.0"
maxRange="50000.0" />
 </KillProbability>

 89

 <KillProbability munitionType="100mm" platformType="DDG51Flt2A"
class="dafs.weapon.LinearKillProbability">
 <Params minRangePK="0.01" maxRangePK="0.0050"
minRange="500.0" maxRange="18000.0" />
 </KillProbability>
 <KillProbability munitionType="100mm" platformType="CG47"
class="dafs.weapon.LinearKillProbability">
 <Params minRangePK="0.01" maxRangePK="0.0050"
minRange="500.0" maxRange="18000.0" />
 </KillProbability>
 <KillProbability munitionType="100mm" platformType="CV"
class="dafs.weapon.LinearKillProbability">
 <Params minRangePK="0.0010" maxRangePK="5.0E-4"
minRange="500.0" maxRange="18000.0" />
 </KillProbability>
 <KillProbability munitionType="100mm" platformType="SH60R"
class="dafs.weapon.LinearKillProbability">
 <Params minRangePK="0.9" maxRangePK="0.5" minRange="0.0"
maxRange="10000.0" />
 </KillProbability>
 <KillProbability munitionType="5InchCVT" platformType="Type052B"
class="dafs.weapon.LinearKillProbability">
 <Params minRangePK="0.01" maxRangePK="0.0050"
minRange="500.0" maxRange="18000.0" />
 </KillProbability>
 <KillProbability munitionType="5InchCVT"
platformType="Type053H3" class="dafs.weapon.LinearKillProbability">
 <Params minRangePK="0.01" maxRangePK="0.0050"
minRange="500.0" maxRange="18000.0" />
 </KillProbability>
 <KillProbability munitionType="5InchCVT" platformType="Zhi-9
Helo" class="dafs.weapon.LinearKillProbability">
 <Params minRangePK="0.9" maxRangePK="0.5" minRange="500.0"
maxRange="10000.0" />
 </KillProbability>
 <KillProbability munitionType="RIM-7" platformType="YJ62 SSM"
class="dafs.weapon.LinearKillProbability">
 <Params minRangePK="0.5" maxRangePK="0.3" minRange="500.0"
maxRange="16000.0" />
 </KillProbability>
 <KillProbability munitionType="SM2" platformType="Type052B"
class="dafs.weapon.LinearKillProbability">
 <Params minRangePK="0.2" maxRangePK="0.2" minRange="500.0"
maxRange="30000.0" />
 </KillProbability>
 <KillProbability munitionType="RIM-7" platformType="Type052B"
class="dafs.weapon.LinearKillProbability">
 <Params minRangePK="0.2" maxRangePK="0.2" minRange="500.0"
maxRange="15000.0" />
 </KillProbability>
 <KillProbability munitionType="SM2" platformType="Type052C"
class="dafs.weapon.LinearKillProbability">
 <Params minRangePK="0.2" maxRangePK="0.2" minRange="500.0"
maxRange="30000.0" />
 </KillProbability>

 90

 <KillProbability munitionType="RIM-7" platformType="Type052C"
class="dafs.weapon.LinearKillProbability">
 <Params minRangePK="0.2" maxRangePK="0.2" minRange="500.0"
maxRange="15000.0" />
 </KillProbability>
 <KillProbability munitionType="SM2" platformType="Type053H3"
class="dafs.weapon.LinearKillProbability">
 <Params minRangePK="0.3" maxRangePK="0.3" minRange="500.0"
maxRange="30000.0" />
 </KillProbability>
 <KillProbability munitionType="RIM-7" platformType="Type053H3"
class="dafs.weapon.LinearKillProbability">
 <Params minRangePK="0.3" maxRangePK="0.3" minRange="500.0"
maxRange="15000.0" />
 </KillProbability>
 <KillProbability munitionType="YJ62 SSM"
platformType="DDG51Flt2A" class="dafs.weapon.LinearKillProbability">
 <Params minRangePK="0.8" maxRangePK="0.6" minRange="2000.0"
maxRange="300000.0" />
 </KillProbability>
 <KillProbability munitionType="YJ62 SSM" platformType="CG47"
class="dafs.weapon.LinearKillProbability">
 <Params minRangePK="0.8" maxRangePK="0.6" minRange="2000.0"
maxRange="300000.0" />
 </KillProbability>
 <KillProbability munitionType="YJ62 SSM" platformType="CV"
class="dafs.weapon.LinearKillProbability">
 <Params minRangePK="0.5" maxRangePK="0.3" minRange="2000.0"
maxRange="300000.0" />
 </KillProbability>
 <KillProbability munitionType="SA-N-12 SAM" platformType="RGM84"
class="dafs.weapon.LinearKillProbability">
 <Params minRangePK="0.5" maxRangePK="0.5" minRange="500.0"
maxRange="50000.0" />
 </KillProbability>
 <KillProbability munitionType="YJ83 SSM" platformType="CG47"
class="dafs.weapon.LinearKillProbability">
 <Params minRangePK="0.6" maxRangePK="0.4" minRange="2000.0"
maxRange="250000.0" />
 </KillProbability>
 <KillProbability munitionType="YJ83 SSM" platformType="CV"
class="dafs.weapon.LinearKillProbability">
 <Params minRangePK="0.3" maxRangePK="0.1" minRange="2000.0"
maxRange="250000.0" />
 </KillProbability>
 <KillProbability munitionType="YJ83 SSM"
platformType="DDG51Flt1" class="dafs.weapon.LinearKillProbability">
 <Params minRangePK="0.6" maxRangePK="0.4" minRange="2000.0"
maxRange="250000.0" />
 </KillProbability>
 <KillProbability munitionType="YJ83 SSM"
platformType="DDG51Flt2A" class="dafs.weapon.LinearKillProbability">
 <Params minRangePK="0.6" maxRangePK="0.4" minRange="2000.0"
maxRange="250000.0" />
 </KillProbability>

 91

 <KillProbability munitionType="HQ9 SAM" platformType="SH60R"
class="dafs.weapon.LinearKillProbability">
 <Params minRangePK="0.8" maxRangePK="0.7" minRange="500.0"
maxRange="90000.0" />
 </KillProbability>
 <KillProbability munitionType="HQ7 SAM" platformType="RGM84"
class="dafs.weapon.LinearKillProbability">
 <Params minRangePK="0.4" maxRangePK="0.4" minRange="500.0"
maxRange="10000.0" />
 </KillProbability>
 <KillProbability munitionType="HQ7 SAM" platformType="SH60R"
class="dafs.weapon.LinearKillProbability">
 <Params minRangePK="0.8" maxRangePK="0.7" minRange="500.0"
maxRange="10000.0" />
 </KillProbability>
 </KillProbabilities>

 92

THIS PAGE INTENTIONALLY LEFT BLANK

 93

APPENDIX B: SIMKIT IMPLEMENTATION OF RADAR MODEL

The following are the three classes written to implement the radar model in

Simkit. These classes were used in conjunction with the Simkit and Actions java

libraries written by Dr. Arnold Buss.

1. NEWRADARSENSOR CLASS

package finalProject;

import Simkit.smdx.Mover;
import Simkit.smdx.CookieCutterSensor;

/**
 * An extension of the cookieCutterSensor. Adds a prf (Periodic Rotation
 * Frequency) to the sensor for later detection of dwell times in
 * calculating time to detection.
 *
 * @author Scott Hattaway
 * @version Id
 */
public class NewRadarSensor extends CookieCutterSensor {

 private double prf;

 /**
 * @param range
 * Maximum range
 * @param mover
 * Platform sensor is mounted on
 * @param prf
 * Radar sensors Periodic Rotation Frequency (prf) in
scans/min
 */
 public ewRadarSensor(double range, Mover mover, double prf) { N
 super(range, mover);
 setPrf(prf);
 }

 /**
 * @return the prf
 */
 public double getPrf() {
 return prf;
 }

 /**
 * @param prf
 * the prf to set
 */

 94

 public void setPrf(double prf) {
 if (prf > 0.0) {
 this.prf = prf;
 } else {
 throw new IllegalArgumentException("PRF must be > 0.0: " +
prf);
 }
 }

 /**
 * @return String version of this object
 */
 public String toString() {
 return "Radar Sensor [" + getMaxRange() + ", " + getPrf() + "]";
 }

}

 95

2. NEWRADARMEDIATOR CLASS

package finalProject;

import java.beans.PropertyChangeEvent;
import java.util.Map;
import java.util.WeakHashMap;
import Simkit.SimEntityBase;
import Simkit.random.RandomVariate;
import Simkit.random.RandomVariateFactory;
import Simkit.smdx.Contact;
import Simkit.smdx.Mover;
import Simkit.smdx.Sensor;
import Simkit.smdx.SensorTargetMediator;
import Simkit.smdx.SensorTargetMediatorFactory;

/**
 * Mediator for NewRadarSensor. At this iteration the mediator evaluates
 * the reduction in range of the sensor due to the RCS of the target and
 * schedules the detection event appropriately. A probability of
 * detection is calculated based on the number of dwells from the target
 * to the sensor. If a detection occurs, a second delay is added
 * generated by a Gamma random variate to account for the number of
 * dwells required before the contact transitions to a track.
 *
 * @author Scott Hattaway
 * @version Id
 */
public class NewRadarMediator extends SimEntityBase implements
 SensorTargetMediator {

 private RandomVariate gammaVariate;

 private RandomVariate uniformVariate;

 /** list of contacts keyed by their originating target */
 private Map<Mover, Contact> contacts;

 public NewRadarMediator() {
 contacts = new WeakHashMap<Mover, Contact>();
 setGammaVariate(RandomVariateFactory.getInstance("Gamma", new
Object[] {
 new Double(1.0), new Double(1.0) }));
 setUni mVariate(Ran VariateFactory getInstance("Uniform", for dom .
 new Object[] { new Double(0.0), new Double(1.0) }));
 }

 ontacts list */ /** Clear c
 public void reset() {
 contacts.clear();
 }

 /**
 * @param sensor

 96

 * Sensor whose range is entered
 * @param target
 * Mover that just entered range
 */
 public void doEnterRange(Sensor sensor, Mover target) {
 if (sensor instanceof NewRadarSensor
 && SensorTargetMediatorFactory.getInstance().getMediatorFor(
 sensor.getClass(), target.getClass()) == this) {
 Contact contact = (Contact) contacts.get(target);
 if (contact == null) {
 contact = new Contact(target);
 contacts.put(target, contact);
 }
 double maxDetectDist = sensor.getMaxRange()
 * (Math.pow((Double) target.getProperty("radarFactor") /
25,
 0.25));
 double dwellCount = (Double) sensor.getProperty("prf") *
maxDetectDist
 / sensor.getMover().getMaxSpeed();
 double probDetect = 1 - Math.pow(0.99, dwellCount);

 System.out.println("MaxDetectDist: " + maxDetectDist
 + "\tDwellCount: " + dwellCount + "\tProbDetect: " +
probDetect);

 if rmVariate.generate() <= probDetect) { (unifo
 double dwellDelay = dwellCount * gammaVariate.generate()
 / (Double) sensor.getProperty("prf");
 double detectDelay = ((sensor.getMaxRange() - maxDetectDist)
/ sensor
 .getMover().getMaxSpeed())
 + dwellDelay;

 System.out.println("Trans to Track \t\t\t\tDwellDelay: "
 + dwellDelay + "\tDetectDelay: " + detectDelay);

 sensor
 .waitDelay("Detection", detectDelay, new Object[] {
contact });
 }
 }
 }

 /**
 * @param sensor
 * Sensor whose range was just exited
 * @param target
 * Mover that just exited range
 */
 public void doExitRange(Sensor sensor, Mover target) {
 if (sensor instanceof NewRadarSensor
 && SensorTargetMediatorFactory.getInstance().getMediatorFor(
 sensor.getClass(), target.getClass()) == this) {
 Object[] contact = new Object[] { contacts.get(target) };

 97

 if (contact[0] != null) {
 sensor.interruptAll("Detection", contact);
 sensor.waitDelay("Undetection", 0.0, contact);
 }
 }
 }

 t d in this class */ /** No use
 public void propertyChange(PropertyChangeEvent propertyChangeEvent) {
 }

 public RandomVariate getGammaVariate() {
 return gammaVariate;
 }

 public RandomVariate getUniformVariate() {
 return uniformVariate;
 }

 public void setGammaVariate(RandomVariate rv) {
 gammaVariate = rv;
 }

 public void setUniformVariate(RandomVariate rv) {
 this.uniformVariate = rv;
 }
}

 98

3. TESTRADARSENSORPLATFOM CLASS

package finalProject;

import animate.PingThread;
import animate.SandboxFrame;
import java.awt.Color;
import java.awt.geom.Point2D;
import Simkit.Schedule;
import Simkit.random.RandomVariate;
import Simkit.random.RandomVariateFactory;
import Simkit.smdx.Mover;
import Simkit.smdx.RandomLocationMoverManager;
import Simkit.smdx.Sensor;
import Simkit.smdx.SensorTargetMediatorFactory;
import Simkit.smdx.SensorTargetReferee;
import Simkit.smdx.UniformLinearMover;
import Simkit.util.PropertyChangeFrame;

/**
 * Unit test of the NewRadarSensor. At this iteration, the mover has two
 * NewRadarSensors with a maximum detect range. One radarSensor
 * simulates an air search radar while the second shorter range sensor
 * simulates a surface search radar. Platform A and C can be detected by
 * the air search radar while all of the three platforms can be detected
 * by the surface search radar. Each platform has a different RCS (radar
 * cross section) effectively creating three different detection ranges.
 * The radar sensor mediator also adds a second delay of detection for
 * the number of dwells required before the target is acquired.
 *
 * @author Scott Hattaway
 * @version Id
 *
 */
public class TestRadarSensorPlatform {

 static {
 SensorTargetMediatorFactory.addMediator(NewRadarSensor.class,
 PlatformC.class, NewRadarMediator.class);
 }

 /**
 * @param args
 */
 public static void main(String[] args) {
 Mover sensorPlatform = new UniformLinearMover("Sensor Platform",
 new Point2D.Double(0.0, 0.0), 10.0);
 Sensor[] sensor = new Sensor[] {
 new NewRadarSensor(150.0, sensorPlatform, 240.0),
 new NewRadarSensor(25.0, sensorPlatform, 3600.0) };

 Mover[] target = new Mover[] {
 new PlatformC("Platform A", new Point2D.Double(50.0, 250.0),
0.0,

 99

 5.0, 1.0),
 new PlatformC("Platform B", new Point2D.Double(300.0,
380.0), 0.0,
 1.0, 1.0),
 new PlatformC("Platform C", new Point2D.Double(550.0,
250.0), 0.0,
 0.1, 1.0) };

 SensorTargetReferee airSensorRef = new SensorTargetReferee();
 airSensorRef.register(sensor[0]);
 airSensorRef.register(target[0]);
 airSensorRef.register(target[2]);

 SensorTargetReferee surfSensorRef = new SensorTargetReferee();
 surfSensorRef.register(sensor[1]);
 surfSensorRef.register(target[0]);
 surfSensorRef.register(target[1]);
 surfSensorRef.register(target[2]);

 System.out.println(airSensorRef);
 System.out.println();
 System.out.println(surfSensorRef);

 Point2D[] path = new Point2D[] { new Point2D.Double(0.0, 400.0),
 new Point2D.Double(400.0, 400.0), new Point2D.Double(400.0,
0.0),
 new Point2D.Double(0.0, 0.0) };

 if (args.length > 0 && args[0].equals("patrol")) {
 PatrolMoverManager pmm = new PatrolMoverManager(sensorPlatform,
path);
 pmm.setStartOnReset(true);
 System.out.println(pmm);
 } else {
 RandomVariate[] rv = new RandomVariate[] {
 RandomVariateFactory.getInstance("Uniform", new Object[]
{
 new Double(path[3].getX()), new
Double(path[1].getX()) }),
 RandomVariateFactory.getInstance("Uniform", new Object[]
{
 new Double(path[3].getY()), new
Double(path[1].getY()) }) };
 RandomLocationMoverManager rlmm = new
RandomLocationMoverManager(
 sensorPlatform, rv);
 rlmm.setStartOnReset(true);
 }

 SandboxFrame frame = new SandboxFrame("Radar Sensor Platform Test
1.3");
 frame.setSize(800, 800);
 ((PingThread) frame.getControlPanel().getController())
 .setMillisPerSimtime(50);

 100

 frame.getSandbox().setOrigin(new Point2D.Double(80, 510));

 for (int i = 0; i < target.length; ++i) {
 frame.addMover(target[i], Color.red);
 }
 frame.addMover(sensorPlatform, Color.blue);

 frame.addSensor(sensor[1], Color.green);
 frame.addSensor(sensor[0], Color.orange);

 Schedule.reset();

 PropertyChangeFrame pcf = new PropertyChangeFrame();
 for (int i = 0; i < sensor.length; ++i) {
 sensor[i].addPropertyChangeListener("detection", pcf);
 sensor[i].addPropertyChangeListener("undetection", pcf);
 }

 frame.setLocation(10, 10);
 frame.setVisible(true);
 pcf.setLocation(frame.getLocationOnScreen().x + frame.getWidth(),
frame
 .getLocationOnScreen().y);
 pcf.setVisible(true);
 }

}

 101

APPENDIX C: DAFS IMPLEMENTATION OF RADAR MODEL

The following are the two classes written to implement the radar model in DAFS.

1. DAFSRADARSENSOR CLASS

package dafs.sensor;

import Simkit.SimEventListener;
import Simkit.smdx.CookieCutterSensor;
import Simkit.smdx.Mover;

/**
 * An extension of the DAFSSensor. Adds a prf (Periodic Rotation
 * Frequency) to the sensor for later detection of dwell times in
 * calculating time to detection.
 *
 * @author Scott Hattaway
 * @version Id
 */
public class DAFSRadarSensor extends DAFSSensor {

 protected static final double DEFAULT_ALTITUDE = 1.0;

 private SensorType type;

 private SimEventListener[] listeners;

 private double prf;

 /**
 * @param range
 * Maximum range
 * @param mover
 * Platform sensor is mounted on
 */
 public AFSRadarSensor(double range, Mover mover) { D
 super(range, mover);
 }

 /**
 * @param range
 * Maximum range
 * @param mover
 * Platform sensor is mounted on
 * @param prf
 * Radar sensors Periodic Rotation Frequency (prf) in
scans/min
 */
 public DAFSRadarSensor(double range, Mover mover, double prf) {
 super(range, mover);
 setPrf(prf);

 102

 }

 public void setSensorType(SensorType type) {
 this.type = type;
 }

 public SensorType getSensorType() {
 return type;
 }

 public double getAltitude() {
 double altitude = DEFAULT_ALTITUDE;
 Object alt = mover.getProperty("altitude");
 if (alt instanceof Number) {
 altitude = ((Number) alt).doubleValue();
 }
 return altitude;
 }

 /**
 * @return the prf
 */
 public double getPrf() {
 return prf;
 }

 /**
 * @param prf
 * the prf to set
 */
 public void setPrf(double prf) {
 if (prf > 0.0) {
 this.prf = prf;
 } else {
 throw new IllegalArgumentException("PRF must be > 0.0: " +
prf);
 }
 }

 /**
 * Removes all of the SimEventListeners.
 */
 public void shutDown() {
 te s = getSimEventListeners(); lis ner
 for int i = 0; i < listeners.length; i++) { (
 this.removeSimEventListener(listeners[i]);
 }
 }

 /**
 * Clears the Contact list.
 */
 public void clearContacts() {
 contacts.clear();
 }

 103

 /**
 * Restores all of the SimEventListeners to this sensor.
 */
 public void restart() {
 if (listeners != null) {
 for (int i = 0; i < listeners.length; i++) {
 this.addSimEventListener(listeners[i]);
 }
 }
 }

 /**
 * @return String version of this object
 */
 public String toString() {
 return "Radar Sensor [" + getMaxRange() + ", " + getPrf() + "]";
 }

}

 104

2. DAFSRADARMEDIATOR CLASS

package dafs.sensor;

import java.beans.PropertyChangeEvent;
import java.util.LinkedHashMap;
import java.util.logging.Logger;
import Simkit.random.RandomVariate;
import Simkit.random.RandomVariateFactory;
import Simkit.smdx.CookieCutterMediator;
import Simkit.smdx.Mover;
import Simkit.smdx.Sensor;
import Simkit.smdx.SensorTargetMediatorFactory;
import dafs.platform.Platform;

/**
 * Mediator for DAFSRadarSensor. At this iteration the mediator
 * evaluates the reduction in range of the sensor due to the RCS of the
 * target and schedules the detection event appropriately. A probability
 * of detection is calculated based on the number of dwells from the
 * target to the sensor. If a detection occurs, a second delay is added
 * generated by a Gamma random variate to account for the number of
 * dwells required before the contact transitions to a track.
 *
 * @author Scott Hattaway
 * @version Id
 */
public class DAFSRadarMediator extends CookieCutterMediator {

 private RandomVariate gammaVariate;

 private RandomVariate uniformVariate;

 public static Logger log = Logger.getLogger("dafs.sensor");

 /** list of contacts keyed by their originating target */
 protected LinkedHashMap contacts;

 public DAFSRadarMediator() {
 setGammaVariate(RandomVariateFactory.getInstance("Gamma", new
Object[] {
 new Double(1.0), new Double(1.0) }));
 setUniformVariate(RandomVariateFactory.getInstance("Uniform",
 new Object[] { new Double(0.0), new Double(1.0) }));
 contacts = new LinkedHashMap();
 }

 ontacts list */ /** Clear c
 public void reset() {
 super.reset();
 contacts.clear();
 }

 /**

 105

 * @param sensor
 * Sensor whose range is entered
 * @param target
 * Mover that just entered range
 */
 public void doEnterRange(Sensor sensor, Mover target) {
 if ((sensor instanceof DAFSRadarSensor) &&
 this ==
SensorTargetMediatorFactory.getInstance().getMediatorFor(sensor.getClass
(),
 target.getClass())) {
 Object contact = contacts.get(target);
 if (contact == null) {
 contact = new DAFSContact((Platform) target);
 contacts.put(target, contact);
 }

 Double rcs = (Double) target.getProperty("crossSection");
 if (rcs != null) {

 double maxDetectDist = sensor.getMaxRange() *
(Math.pow(rcs.doubleValue() / 25, 0.25));
 double dwellCount = (Double) sensor.getProperty("prf") *
maxDetectDist / sensor.getMover().getMaxSpeed();
 double probDetect = 1 - Math.pow(0.99, dwellCount);

 if (mVariate.generate() <= probDetect) { unifor
 double dwellDelay = dwellCount *
gammaVariate.generate() / (Double) sensor.getProperty("prf");
 double detectDelay = ((sensor.getMaxRange() -
maxDetectDist) / sensor.getMover().getMaxSpeed()) + dwellDelay;

 sensor.waitDelay("Detection", detectDelay, new
Object[]{contact});
 }
 }
 }
 }

 /**
 * @param sensor
 * Sensor whose range was just exited
 * @param target
 * Mover that just exited range
 */
 public void doExitRange(Sensor sensor, Mover target) {
 if ((sensor instanceof DAFSRadarSensor)
 && this == SensorTargetMediatorFactory.getInstance()
 .getMediatorFor(sensor.getClass(), target.getClass()))
{
 ject contact ntacts.get(target); Ob = co
 if (contact != null) {
 sensor.interrupt("Detection", new Object[] { contact });
 sensor.waitDelay("Undetection", 0.0, new Object[] { contacts
 .get(target) });

 106

 }
 }
 }

 t d in this class */ /** No use
 public void propertyChange(PropertyChangeEvent propertyChangeEvent) {
 }

 public RandomVariate getGammaVariate() {
 return gammaVariate;
 }

 public RandomVariate getUniformVariate() {
 return uniformVariate;
 }

 public void setGammaVariate(RandomVariate rv) {
 gammaVariate = rv;
 }

 public void setUniformVariate(RandomVariate rv) {
 this.uniformVariate = rv;
 }
}

 107

APPENDIX D: SIMULATION UNIT CHARACTERISTICS

The information for each class of ship or weapon used in the simulation were

researched in the applicable Jane’s reference and then defined in DAFS terminology for

the scenario. Some weapons systems were not implemented in the scenario due to their

redundancy or lack of interaction within the scenario. All values for the weapons were

converted to metric units to conform with the common measurement system used in the

DAFS model.

1. AMERICA CLASS AIRCRAFT CARRIER (CV)

Characteristic Jane’s Listing DAFS Definition
Displacement 83,960 tons (full load) 83960 assigned value for CVA
Speed 32 knots Converted to 988m/min for speed
Missiles 2 Mk26 NSSM Launchers

2 Mk49 RAM Launchers
RIM-7 munition implemented with 4
launchers

Guns 2 20mm CIWS 20mm CIWS implemented
Radars SPS-48E

SPS-49(V)5
Mk 23/7 TAS
SPS-67

Implemented as DAFSRadarSensor
Not implemented (2d Radar)
Not implemented (FC radar)
Implemented as DAFSSensor

Helicopters 4 SH-60F (logistics helo)
3 HH-60H (SAR helo)

Not implemented

 108

2. TICONDEROGA CLASS CRUISER (CG)

Characteristic Jane’s Listing DAFS Definition
Displacement 9957 tons (full load) 9957 assigned value for CVA
Speed 30+ knots Converted to 926m/min for speed
Missiles 2 Mk141 Harpoon CLS

2 Mk41 VLS
RGM-84 munition implemented
SM-1 munition implemented

Guns 2 5”/54 Mk 45 Guns
2 20mm CIWS

5”CVT munition implemented
20mm CIWS implemented

Radars SPY-1B
SPS-49(V)7
SPS-55
SPS-64
SPQ-9B

Implemented as DAFSRadarSensor
Not implemented (redundant radar)
Implemented as DAFSRadarSensor
Implemented as DAFSSensor
Implemented as DAFSSensor

Helicopters 2 SH-60B LAMPS Implemented as SH-60R LAMPS

 109

3. ARLEIGH BURKE CLASS (FLIGHT I/II) DESTROYER (DDG)

Characteristic Jane’s Listing DAFS Definition
Displacement 8950 tons (full load) 8950 assigned value for CVA
Speed 32 knots Converted to 988m/min for speed
Missiles 2 Mk141 Harpoon CLS

2 Mk41 VLS
RGM-84 munition implemented
SM-1 munition implemented

Guns 1 5”/54 Mk 45 Guns
2 20mm CIWS

5”CVT munition implemented
20mm CIWS implemented

Radars SPY-1D
SPS-67
SPS-64

Implemented as DAFSRadarSensor
Implemented as DAFSRadarSensor
Implemented as DAFSSensor

Helicopters None

 110

4. ARLEIGH BURKE CLASS (FLIGHT IIA) DESTROYER (DDG)

Characteristic Jane’s Listing DAFS Definition
Displacement 9188 tons (full load) 9188 assigned value for CVA
Speed 31 knots Converted to 957m/min for speed
Missiles 2 Mk41 VLS SM-1 munition implemented
Guns 1 5”/54 Mk 45 Guns 5”CVT munition implemented
Radars SPY-1D

SPS-67
SPS-64

Implemented as DAFSRadarSensor
Implemented as DAFSRadarSensor
Implemented as DAFSRadarSensor

Helicopters 2 SH-60B LAMPS Implemented as SH-60R LAMPS

 111

5. LUYANG II (TYPE 052C) CLASS DESTROYER (DDGHM)

Characteristic Jane’s Listing DAFS Definition
Displacement 7000 tons (full load) 7000 assigned value for CVA
Speed 29 knots Converted to 895m/min for speed
Missiles YJ-62

HHQ-9
YJ-62 munition implemented
HHQ-9 munition implemented

Guns 1 100mm/56 gun 100mm munition implemented
Radars Type 517 Knife Rest

Type 348
Type 364
Type 344

Not implemented (redundant)
Implemented as DAFSRadarSensor
Implemented as DAFSRadarSensor
Implemented as DAFSSensor

Helicopters 2 Zhi-9A Haitun Implemented as

 112

6. LUYANG I (TYPE 052B) CLASS DESTROYER (DDGHM)

Characteristic Jane’s Listing DAFS Definition
Displacement 7000 tons (full load) 7000 assigned value for CVA
Speed 29 knots Converted to 895m/min for speed
Missiles YJ-83

SA-N-12 Grizzly
YJ-83 munition implemented
SA-N-12 munition implemented

Guns 1 100mm/56 gun 100mm munition implemented
Radars Top Plate

Type 364
Type 344

Implemented as DAFSRadarSensor
Implemented as DAFSRadarSensor
Implemented as DAFSSensor

Helicopters 1 Zhi-9A Haitun Implemented as

 113

7. JIANGWEI II (TYPE 053H3) CLASS FRIGATE (FFGHM)

Characteristic Jane’s Listing DAFS Definition
Displacement 3250 tons (full load) 3250 assigned value for CVA
Speed 32 knots Converted to 988m/min for speed
Missiles YJ-81

HQ-7
YJ-81 munition implemented
HQ-7 munition implemented

Guns 2 130mm 130mm munition implemented
Radars Type 517 Knife Rest

Type 364
Type 344

Not implemented (redundant)
Implemented as DAFSRadarSensor
Implemented as DAFSSensor

Helicopters None

 114

 115

8. SURFACE-TO-SURFACE MISSILES

Missile Characteristics Jane’s
Listing

DAFS Implementation

RGM-84
(HARPOON)

Speed
Range
Warhead

0.85 Mach
80 nm
221.6 kg

Converted to 16915 m/min for speed
Converted to 146304m for range
Assigned weight of 222

RIM-7
(Surface
Mode)

Speed
Range
Warhead

2.5 Mach
15 km
38.6 kg

Converted to 49750 m/min for speed
Converted to 15000m for range
Assigned weight of 39

SM-2
(Surface
Mode)

Speed
Range
Warhead

2.5 Mach
15 nm
90 kg

Converted to 49750 m/min for speed
Converted to 30000m for range
Assigned weight of 90

YJ-62
(C-602)

Speed
Range
Warhead

0.9+ Mach
300 km
300 kg

Converted to 17910 m/min for speed
Converted to 300000m for range
Assigned weight of 300

YJ-81
(CSS-N-4)

Speed
Range
Warhead

0.9 Mach
80 km
165 kg

Converted to 17910 m/min for speed
Converted to 80000m for range
Assigned weight of 165

YJ-83
(C-803)

Speed
Range
Warhead

1.3+ Mach
250 km
165 kg

Converted to 25870 m/min for speed
Converted to 250000m for range
Assigned weight of 165

9. SURFACE-TO-AIR MISSILES

Missile Characteristics Jane’s
Listing

DAFS Implementation

HQ-7 Speed
Range
Warhead

2.3 Mach
10 km
10 kg

Converted to 45770 m/min for speed
Converted to 10000m for range
Assigned weight of 10

HQ-9 Speed
Range
Warhead

4 Mach
90km
180 kg

Converted to 79600 m/min for speed
Converted to 90000m for range
Assigned weight of 180

RIM-7
NSSM

Speed
Range
Warhead

2.5 Mach
16 km
38.6 kg

Converted to 49750 m/min for speed
Converted to 16000m for range
Assigned weight of 39

SA-N-12
Grizzly

Speed
Range
Warhead

3 Mach
50 km
70 kg

Converted to 59700 m/min for speed
Converted to 50000m for range
Assigned weight of 70

SM-2
(Air Mode)

Speed
Range
Warhead

2.5 Mach
180 km
90 kg

Converted to 49750 m/min for speed
Converted to 180000m for range
Assigned weight of 90

 116

THIS PAGE INTENTIONALLY LEFT BLANK

 117

LIST OF REFERENCES

Ahner, Daryll, Leroy Jackson and Donovan Phillips. 2005. DAFS: A Low Resolution
Modeling Approach: Architecture and Implementation. Proceedings of The 10th
Annual International Conference on Industrial Engineering Theory, Applications
& Practice; December 2005.

Buss, Arnold. 2000. Component Based Simulation Modeling. Proceedings of the 2000

Winter Simulation Conference, edited by P.A. Fishwick, K. Kang, J. A. Joines,
and R. R. Barton.

Buss, Arnold and Daryll Ahner. 2006. Dynamic Allocation of Fires and Sensors (DAFS):

A Low-Resolution Simulation for Rapid Modeling. Proceedings of the 2006
Winter Simulations Conference, edited by L. F. Perrone, F. P. Wieland, J. Liu, B.
G. Lawson, D. M. Nicol, and R. M. Fujimoto.

Buss, Arnold and Paul Sanchez. 2002. Building Complex Models with LEGOS (Listener

Event Graph Objects). Proceedings of the 2002 Winter Simulation Conference,
edited by E. Yucesan, C. H. Chen, J. L. Snowden, J. M. Diarmes.

Case, Frederick T., Christopher W. Hines and Steven N. Satchwell. 1993. Analysis of air

operations during DESERT SHIELD and DESERT STORM. Naval Research
Logistics, volume 42, issue 4, Wiley Periodicals, Inc.

Chinese Defense Today. 2006. 9M317 / Shtil (SA-N-12) Ship-to-Air Missile.

http://www.sinodefence.com/navy/navalmissile/9m317.asp. Last updated 29 April
2006. Accessed 28 February 2008.

Chinese Defense Today. 2006. Naval HQ-7 Ship-to-Air Missile.

http://www.sinodefence.com/navy/navalmissile/hq7naval.asp. Last updated 30
April 2006. Accessed 28 February 2008.

Chinese Defense Today. 2006. Naval HQ-9 Ship-to-Air Missile.

http://www.sinodefence.com/navy/navalmissile/hq9naval.asp. Last updated 29
April 2006. Accessed 28 February 2008.

Chinese Defense Today. 2007. Type 052B Luyang Class Missile Destroyer.

http://www.sinodefence.com/navy/surface/type052b_luyang.asp. Last updated 22
June 2007. Accessed 28 February 2008.

Chinese Defense Today. 2007. Type 052C Luyang-II Class Missile Destroyer.

http://www.sinodefence.com/navy/surface/type052c_luyang2.asp. Last updated
22 June 2007. Accessed 28 February 2008.

http://www.sinodefence.com/navy/navalmissile/9m317.asp
http://www.sinodefence.com/navy/navalmissile/hq7naval.asp
http://www.sinodefence.com/navy/navalmissile/hq9naval.asp
http://www.sinodefence.com/navy/surface/type052b_luyang.asp
http://www.sinodefence.com/navy/surface/type052c_luyang2.asp

 118

Chinese Defense Today. 2007. Type 053H2G/H3 Jiangwei Class Missile Frigate.
http://www.sinodefence.com/navy/surface/type053h3_jiangwei.asp. Last updated
22 June 2007. Accessed 28 February 2008.

Chinese Defense Today. 2006. YJ-62 Anti-Ship Cruise Missile.

http://www.sinodefence.com/navy/navalmissile/yj62.asp. Last updated 7 October
2006. Accessed 28 February 2008.

Chinese Defense Today. 2007. YJ-8 (C-801) Anti-Ship Missile.

http://www.sinodefence.com/navy/navalmissile/yj8.asp. Last updated 9 July 2007.
Accessed 28 February 2008.

Chinese Defense Today. 2007. YJ-83 Anti-Ship Missile.

http://www.sinodefence.com/navy/navalmissile/yj83.asp. Last updated 9 July
2007. Accessed 28 February 2008.

Chinese Defense Today. 2007. Z-9C (AS 565 Panther) Naval Helicopter.

http://www.sinodefence.com/airforce/helicopter/z9c.asp. Last updated 28 July
2007. Accessed 28 February 2008.

Havens, Michael E., editor. 2002. Dynamic Allocation of Fires and Sensors, Masters

Thesis, Operations Research Department, Naval Postgraduate School, Monterey
CA.

Hooten, E. R. 2006. Jane’s Naval Weapon Systems, Issue 44, Jane’s Information Group,

Inc., Alexandria, VA.

Jackson, Leroy and Donovan Phillips. 2005. Using A Low Resolution Entity Level

Modeling Approach. The Bulletin of Military Operations Research: Phalanx, 38-
2: 15-26.

Koxinga. 2004. A Brief History of Chinese Naval Radar and EW Developments. China-

Defense.com. http://www.china-defense.com/naval/plan_radar_ew/PLA-
N%20Radar%20and%20EW.pdf.

Knott, Eugene F., John F. Shaeffer and Micheal T. Tuley. 2004. Radar Cross Section.

Second Edition, Scitech Publishing, Inc., Raleigh.

Law, Averil M. and David W. Kelton. 2000. Simulation Modeling and Analysis, 3rd

edition, McGraw Hill.

Mazumdar, Mrityunjoy and Glenn Levick. The People's Liberation Army Navy (PLAN)

The Future Fleet of 2050. China-Defense.com. http://www.china-
defense.com/naval/plan2050/plan2050-1.html.

http://www.sinodefence.com/navy/surface/type053h3_jiangwei.asp
http://www.sinodefence.com/navy/navalmissile/yj62.asp
http://www.sinodefence.com/navy/navalmissile/yj8.asp
http://www.sinodefence.com/navy/navalmissile/yj83.asp
http://www.sinodefence.com/airforce/helicopter/z9c.asp

 119

The Johns Hopkins University Applied Physics Laboratory. 2006. OPNAV Analytical
Models Catalog. Prepared by National Security Analysis Department.

Ragsdale, Cliff T. 2001. Spreadsheet Modeling and Decision Analysis, 3rd edition, South

Western Publishing, Cincinnati, OH.

Saunders, Stephen, editor. 2006. Jane’s Fighting Ships 2006-2007, Jane’s Information

Group, Inc., Alexandria, VA.

Skolnik, Merrill I., et alia. 1990. Radar Handbook, 2nd Edition, McGraw-Hill.

 120

THIS PAGE INTENTIONALLY LEFT BLANK

 121

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Professor Arnold H. Buss
Naval Postgraduate School
Monterey, California

4. Professor Ronald D. Fricker, Jr.
Naval Postgraduate School
Monterey, California

5. CAPT Robert Adrion, USN
Sea Strike (N81T) Branch Head
OPNAV N81 Assessment Division
Pentagon, Arlington Virginia

6. Christina K. Jurgens
Sea Strike (N81T) Senior Analyst
OPNAV N81 Assessment Division
Pentagon, Arlington Virginia

7. LTC Darryl K. Ahner
TRAC-Monterey
Monterey, California

8. LTC Jeffrey B. Schamburg

TRAC-Monterey
Monterey, California

9. MAJ Manuel Ugarte

TRAC-Monterey
Monterey, California

	I. INTRODUCTION
	A. RESEARCH OBJECTIVES
	1. Stochastic Emulation of Radar Probability
	2. Emulation of Modern Naval Weapons
	3. Methodology to Analyze Scenario Results

	II. METHODOLOGY
	A. THE RADAR MODEL
	1. The Radar Equation
	2. The Glimpse Model
	3. Applying the Radar Equation to a Kinematic Model
	4. Applying the Glimpse Model to Determine Time of Detection

	B. EMULATING NAVAL WEAPONS
	1. Straight Missile Flight Path
	2. Missile Flight Path with Waypoints
	3. Waypoints Do Not Provide More Insight

	III. IMPLEMENTATION
	A. MAJOR COMPONENTS
	1. Physical Components
	a. Platforms
	b. Sensors
	c. Weapons
	d. Munitions

	2. Primary Component Interactions
	a. Sources and Listeners
	b. Referees and Mediators/Adjudicators

	3. Functional Components
	a. Mover Managers
	b. Command Element
	c. Kill Probability Objects
	d. Inventory Objects

	4. Weapon Assignment Components
	a. Value of Potential Assignments
	b. VPA Usage
	c. Constrained Value Optimizer

	B. DAFS EXECUTION
	1. Input
	2. Runtime
	3. Output

	C. RADAR MODEL IMPLEMENTATION
	1. Simkit Implementation
	2. DAFS Implementation

	IV. SCENARIO AND ANALYSIS
	A. BASE SCENARIO DESCRIPTION
	1. Scenario Units
	2. Scenario Layout
	3. Scenario Victory Conditions

	B. DESIGN OF EXPERIMENT
	1. Factors
	2. Scenario Replications

	C. ANALYSIS
	1. Rough Analysis
	2. Logistic Regression Analysis
	3. Linear Regression Analysis
	4. Analysis Conclusions

	V. CONCLUSIONS
	A. CONCLUSIONS
	B. RECOMMENDATIONS
	C. FOLLOW ON RESEARCH

	APPENDIX A: SAMPLE DAFS XML FILES
	1. BASE SCENERIO FILE
	2. PLATFORM VALUES
	3. KILL PROBABILITIES

	APPENDIX B: SIMKIT IMPLEMENTATION OF RADAR MODEL
	1. NEWRADARSENSOR CLASS
	2. NEWRADARMEDIATOR CLASS
	3. TESTRADARSENSORPLATFOM CLASS

	APPENDIX C: DAFS IMPLEMENTATION OF RADAR MODEL
	1. DAFSRADARSENSOR CLASS
	2. DAFSRADARMEDIATOR CLASS

	APPENDIX D: SIMULATION UNIT CHARACTERISTICS
	1. AMERICA CLASS AIRCRAFT CARRIER (CV)
	2. TICONDEROGA CLASS CRUISER (CG)
	3. ARLEIGH BURKE CLASS (FLIGHT I/II) DESTROYER (DDG)
	4. ARLEIGH BURKE CLASS (FLIGHT IIA) DESTROYER (DDG)
	5. LUYANG II (TYPE 052C) CLASS DESTROYER (DDGHM)
	6. LUYANG I (TYPE 052B) CLASS DESTROYER (DDGHM)
	7. JIANGWEI II (TYPE 053H3) CLASS FRIGATE (FFGHM)
	8. SURFACE-TO-SURFACE MISSILES
	9. SURFACE-TO-AIR MISSILES

	LIST OF REFERENCES
	INITIAL DISTRIBUTION LIST

